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Abstract: Fibromyalgia is a syndrome characterized by chronic and widespread musculoskeletal
pain, often accompanied by other symptoms, such as fatigue, intestinal disorders and alterations
in sleep and mood. It is estimated that two to eight percent of the world population is affected
by fibromyalgia. From a medical point of view, this pathology still presents inexplicable aspects.
It is known that fibromyalgia is caused by a central sensitization phenomenon characterized by
the dysfunction of neuro-circuits, which involves the perception, transmission and processing of
afferent nociceptive stimuli, with the prevalent manifestation of pain at the level of the locomotor
system. In recent years, the pathogenesis of fibromyalgia has also been linked to other factors, such
as inflammatory, immune, endocrine, genetic and psychosocial factors. A rheumatologist typically
makes a diagnosis of fibromyalgia when the patient describes a history of pain spreading in all
quadrants of the body for at least three months and when pain is caused by digital pressure in
at least 11 out of 18 allogenic points, called tender points. Fibromyalgia does not involve organic
damage, and several diagnostic approaches have been developed in recent years, including the
analysis of genetic, epigenetic and serological biomarkers. Symptoms often begin after physical or
emotional trauma, but in many cases, there appears to be no obvious trigger. Women are more prone
to developing the disease than men. Unfortunately, the conventional medical therapies that target
this pathology produce limited benefits. They remain largely pharmacological in nature and tend to
treat the symptomatic aspects of various disorders reported by the patient. The statistics, however,
highlight the fact that 90% of people with fibromyalgia also turn to complementary medicine to
manage their symptoms.
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1. Fibromyalgia

Fibromyalgia (FM) is a syndrome characterized by chronic musculoskeletal pain. The
main symptoms of this disease are muscle stiffness, joint stiffness, insomnia, fatigue, mood
disorders, cognitive dysfunction, anxiety, depression, general sensitivity and the inability to
carry out normal daily activities [1,2]. FM can also be associated with specific diseases, such
as infections, diabetes, rheumatic diseases and psychiatric or neurological disorders [3].
FM was first described in the 19th century. In the 1970s and 1980s, an etiology of the disease
involving the central nervous system was discovered [4]. In 1950, Graham introduced
the concept of “pain syndrome” in the absence of a specific organic disease [5]. The term
“fibromyalgia” was later coined by Smythe and Moldofsky following the identification
of regions of extreme tenderness known as “pain points” [6]. These points are defined as
areas of hyperalgesia/allodynia when a pressure of about 4 kg causes pain [7]. In 1990, the
committee of the American College of Rheumatology (ACR) drew up diagnostic criteria,
which have only recently been modified [8,9]. According to the ACR, the diagnosis of
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FM includes two variables: (1) bilateral pain above and below the waist, characterized
by centralized pain, and (2) chronic generalized pain that lasts for at least three months,
characterized by pain on palpation in at least 11 of 18 specific body sites [10] (Figure 1).
FM affects about 5% of the world population. The incidence is higher in women than in
men, and the age range in which FM generally appears is between 30 and 35 years [11].
However, FM remains a poorly understood and difficult-to-diagnose condition.
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2. Pathophysiology

The pathophysiological factors of FM are not yet well known and continue to be the
focus of much research. FM appears to be related to a pain-processing problem in the brain.
In most cases, patients become hypersensitive to pain. The constant hypervigilance to pain
can also be associated with psychological problems [12].

The main alterations observed in FM are dysfunctions in mono-aminergic neurotrans-
mission, leading to elevated levels of excitatory neurotransmitters, such as glutamate and
substance P, and decreased levels of serotonin and norepinephrine in the spinal cord at the
level of descending anti-nociceptive pathways. Other anomalies observed are dopamine
dysregulation and altered activity of endogenous cerebral opioids. Taken together, these
phenomena seem to explain the central physiopathology of FM [13].

Over the years, peripheral pain generators have also been recognized as a possible
cause of FM. In this case, patients manifest symptoms such as cognitive impairment,
chronic fatigue, sleep disturbances, intestinal irritability, interstitial cystitis and mood
disorders [14,15].

Peripheral abnormalities may contribute to increased nociceptive tonic supply in the
spinal cord, which results in central sensitization. Other factors that appear to be involved
in the pathophysiology of FM are neuroendocrine factors, genetic predisposition, oxidative
stress and environmental and psychosocial changes [16,17].

FM appears to be more common in women than men for the following reasons: higher
levels of anxiety and depression, altered behavior in response to pain, altered CNS input
and hormonal effects related to the menstrual cycle [12].

2.1. Principal Processes Underlying FM

As mentioned above, FM is considered a central sensitivity syndrome. Central sensi-
tization refers to a neuronal signal amplification mechanism within the central nervous
system that leads to a greater perception of pain [18]. For this reason, patients with FM
present an increase in the receptive field of pain, allodynia and hyperalgesia. Central
sensitization is also implicated in persistent and chronic pain. Although central sensiti-
zation plays an important role in FM, it is even more important to understand the initial
cause, that is, the persistent nociceptive input associated with tissue damage, including
peripheral sensitization [19] (Figure 2). According to Vierck, if peripheral pain generators
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can be blocked, the symptoms of FM should disappear or not even develop. Despite
this, researchers focus more on central sensitization as the mechanism of pain sensitivity
because there is less evidence to support the involvement of peripheral pain tissue ab-
normalities and nociceptive processes in FM [20]. However, sensitization is not a unitary
phenomenon, and a distinction must be made between central, peripheral and psychosocial
sensitization [21,22]. Brosschot et al. observed that FM patients were selectively attentive to
information regarding the body and the environment in relation to pain. In this regard, they
introduced the term “cognitive-emotional sensitization” to explain how selective attention
to certain body pain can increase the perception of that pain. Pain sensitivity is also linked
to social groups. It has been suggested that the mechanism that underlies “interpersonal
sensitization” could be linked to the shared neuronal representation of the experience of
pain. In other words, a feed-forward effect occurs in which a family, in an attempt to reduce
painful behaviors in one of its members, actually creates a state of anxiety in the person
concerned by increasing the perception of pain [23,24].
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2.1.1. Peripheral and Central Sensitization

Patients with FM present a lower pain threshold that generates a condition of diffuse
hyperalgesia and/or allodynia. This indicates that there may be a problem with the ampli-
fication of pain or with sensory processing in the CNS. These FM phenomena have been
confirmed in clinical studies that used functional neuroimaging or measured alterations in
neurotransmitter levels that influence sensory transmission and pain [25–27]. It was also
observed that treatments with drugs aimed at increasing anti-nociceptive neurotransmit-
ters in the CNS or at lowering the levels of pro-nociceptive excitatory neurotransmitters,
such as glutamate, were able to improve these conditions in patients with FM. Exercise
has also proved useful for increasing anti-nociceptive neurotransmitters and reducing
glutamate [28,29]. In contrast, patients with FM do not respond to non-steroidal anti-
inflammatory drug (NSAID) therapies aimed at resolving acute pain or pain induced by
tissue damage or inflammation. Animal models of non-inflammatory pain, such as that
induced by repeated injections of acidic saline (pH 4 or pH 5) into the gastrocnemius
muscle, have been used to mimic the clinical signs and symptoms observed in FM [30–33].
These studies reported that widespread and lasting hyperalgesia was greater in female
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mice than in males [31,32]. In addition, a pharmacological response similar to the clinical
one was observed in animal models of non-inflammatory pain used for FM. In particular, a
reduction in pain and hyperalgesia was observed following treatment with antidepressants,
opioids, glutamate receptor antagonists and Na+ channels, while no effect was observed
with NSAIDs [34–36].

Clinical studies based on functional magnetic resonance imaging (fMRI) have con-
firmed a central neuronal alteration in nociceptive processes. In particular, following the
same amount of pressure stimuli, patients with FM had greater neuronal activation in the
pain-processing areas of the brain than control subjects [37,38]. In individuals with diffuse
hyperalgesia or allodynia, the main brain regions in which greater neuronal activity is
observed are the posterior insula and secondary somatosensory cortices [39,40]. The subtle
differences in fMRI results in studies on FM or other chronic pain conditions are due to the
fact that the stimulus to induce pain is not normalized and therefore may differ in intensity
with each scan. fMRI studies have also been useful for determining the involvement of
psychological factors in pain processing in FM [40–43].

The use of fMRI has also been useful for examining the degree of connection between
the various brain regions. This analysis has been applied to both resting and active
individuals. The advantage of the analysis at rest is that it provides data on brain changes
associated with ongoing spontaneous chronic pain. With this technique, individuals
with FM were shown to have greater connectivity between a network called “default
mode” (active when the brain is at rest) and the insula (pro-nociceptive region) [44]. The
degree of connectivity between these regions depends on the intensity of spontaneous and
continuous pain [45]. It was later found that other brain regions may be hypo-connected in
individuals with FM. For example, following a painful stimulus, a reduction in connectivity
is observed between the anti-nociceptive areas in the brain stem in patients with FM. This
suggests that there is a defect in the descending inhibitory systems in this condition [46].
Additionally, in clinical studies, an increase in glutamate levels has been observed in the
brains of FM patients [47–49]. Using proton magnetic resonance spectroscopy, these levels
were observed to increase in the main areas of pain processing, such as the insula [50–52].

Furthermore, pregabalin has been observed to reduce glutamatergic activity in the
insula and functional connectivity between the default mode network and the insula in
patients with FM [53]. Another important clinical observation is that some subgroups
of patients with FM respond to treatment with N-methyl-D-aspartate (NMDA) gluta-
mate receptor antagonists, suggesting an increase in glutamatergic activity. However,
the use of these drugs is not always well tolerated and therefore may not always have
a clinical use [54–56]. Alternatively, a low-glutamate diet has been shown to reduce FM
symptoms [57]. Parallel to the clinical evidence, animal studies in the non-inflammatory
pain model, which is used to induce the typical symptoms of FM, have shown increased
glutamate release in the spinal and ventromedial rostral cords [58,59]. In particular, in
non-inflammatory pain models that involve two injections (administered five days apart) of
acidic saline into the gastrocnemius muscle, an increase in glutamate levels was observed
after the second injection of acidic saline but not after the first. This increase corresponds to
the development of prolonged diffuse hyperalgesia that occurs after the second injection.
This suggests that greater excitability in the CNS induced by a single low-intensity muscle
insult causes the same nervous system to mount an exaggerated response to a subsequent
occurrence of the same stimulus. As in FM patients, experimental animals respond to the
blockade of NMDA receptors [60–62]. An important role in the excitability of neurons is
played by the NR1 subunit of the NMDA receptor, which is necessary for the formation
of the receptor itself and its insertion into the synapse. In an animal study, recombinant
lentiviruses were used to overexpress the NR1 subunit, and the nociceptive sensitivity
to skin and muscle stimuli was measured to demonstrate that the increased expression
of the NR1 subunit in the ventromedial rostral medulla is critical for the development of
hypersensitivity. The results showed that NR1 overexpression in the rostral ventromedial
medulla reduced the muscle and skin withdrawal threshold, leading to diffuse hyperal-
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gesia similar to that observed in the non-inflammatory pain model. Furthermore, in the
same study, the expression of NR1 was downregulated, and the hyperalgesia induced by
repeated muscle injections of acid saline (pH 4.0) was measured. The results showed that
downregulation of this subunit increased the muscle withdrawal threshold, preventing
the onset of hyperalgesia [61,62]. Taken together, these data provide evidence that NMDA
glutamate receptors in the CNS play a central role in the induction and maintenance of
widespread hyperalgesia. Another fundamental role that has emerged from in vivo studies
is that played by intracellular messengers, whose changes can produce lasting effects by
altering neuronal excitability and improving gene transcription. In an FM animal model
induced by restraint stress with intermittent cold stress, brain-derived neurotrophic factor
(BDNF) and phospho-cAMP response element-binding protein (p-CREB) proteins were
downregulated in the medial prefrontal cortex and hippocampus of animals with FM
compared to the control group. Therefore, this animal model of FM could be used to
investigate the BDNF–CREB pathway and pain [63]. Studies of acute paw inflammation
induced by carrageenan [64] or subcutaneous formalin [65,66] and studies on neuropathic
pain [67,68] have shown an increase in phosphorylated CREB due to the activation of the
cAMP pathway. On the basis of these studies, a group of researchers aimed to evaluate
the role of the cAMP pathway in mechanical hyperalgesia and in the phosphorylation of
the transcription factor CREB in a model of chronic muscle pain (two injections of sterile
saline at pH 4.0) which mimics the typical chronic muscle pain of patients with FM. The
results of this study demonstrate that CREB phosphorylation is time-dependent and occurs
in parallel to the cAMP-dependent phase of mechanical hyperalgesia. The increase in
CREB phosphorylation is reversed by blocking the cAMP pathway and correlates with
the mechanical withdrawal threshold. Therefore, the increase in phosphorylated CREB
may contribute to mechanical hyperalgesia. These data have some clinical relevance, as
they suggest that modulation of the cAMP pathway may be useful in the early stages
of muscle hyperalgesia [69]. In addition, an increase in the phosphorylation of ERK, an
intracellular signaling molecule, was also observed at the level of the paraventricular
thalamus and in the amygdala [70,71]. This phenomenon and hyperalgesia can be pre-
vented by the intracerebroventricular blockade of T-type Ca2+ channels [70]. This latter
observation suggests that Ca2+ channels may mediate some of these changes. Therefore,
the animal models studied show that alterations in central excitability occur throughout
the nociceptive system, from the spinal cord to the cortex.

Although FM is thought to be a central pain disorder, many studies have shown
peripheral nerve changes in patients with FM. In particular, people with FM have been
reported to have a reduced number of epidermal nerve fibers in skin biopsies [72–75].
Clinical observations have also shown that FM patients score higher on neuropathic pain
questionnaires and have altered heat, cold and pain thresholds [72,73]. By using microneu-
rography on patients, some researchers have shown that mechanically insensitive C-fibers
have higher spontaneous activity and increased sensitization to mechanical stimulation [76].
The notion that peripheral factors may underlie pain in FM is supported by the observation
that the administration of lidocaine into the muscles of patients with FM significantly
reduced hyperalgesia at the local site, and moreover, the pain perceived outside the injec-
tion site was reduced by 38% [77]. In a study investigating changes in muscle tissue, no
differences were observed in the number of type I or II fibers or in the capillary density
between individuals with FM and healthy subjects [78]. However, other clinical studies
have shown that resistance to fatigue was closely related to the size of type I muscle fibers
and the oxygenation of hemoglobin. FM patients who had a higher percentage of type
I fibers were shown to recover strength more efficiently. According to these researchers,
these measures may relate to the fatigue typical of FM. Although no differences were noted
in measurements of performance or muscle fatigue between subjects with and without
FM, individuals with FM, especially women, reported increased fatigue and pain during
exercise [79,80]. Self-reported fatigue is generally thought to be caused by the CNS since
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these symptoms often respond to centrally acting drugs, but according to the latest data,
these symptoms are possibly due to changes in muscle tissue.

In humans, the intramuscular injection of an acid solution into the anterior tibial
muscle induces muscle pain both at the site and in the ankle, producing primary and
secondary hyperalgesia [81]. Therefore, a decrease in pH can contribute to hyperalgesia and
referred pain. It has been reported that some acid-sensing ion channel (ASIC) members are
activated following very slight acidification (from pH 7.4 to 7.2) and generate a depolarizing
current at the peripheral terminals of nociceptors, leading to the detection of pain [82–84].
A greater number of acid-sensing ion channel 3 (ASIC3) receptors have been observed
on sensory neurons innervating the skeletal muscle than on those innervating the skin.
Furthermore, most of these afferents that innervate skeletal muscle and express ASIC3
also co-express calcitonin gene-related peptide (CGRP), a nociceptive marker [85,86]. The
important role of ASIC3 activation on nociceptors that innervate the skeletal muscle in
the induction of diffuse hyperalgesia was suggested by the results of an animal study,
which demonstrated that blocking ASIC3 with APETx2 was capable of inhibiting the
development of hyperalgesia [87–89]. Furthermore, the importance of ASIC3 activation
was also observed in the repeated acid model or fatigue-induced model, as hyperalgesia
was not detected in ASIC3 knockout mice [89,90].

However, it has been shown that an ASIC antagonist administered after the onset of
hyperalgesia has no positive effect. This indicates that once hyperalgesia has developed,
it is independent of the activation of nociceptors due to acid pH [87,91]. In contrast, in a
reserpine-induced FM model, ASIC3 mRNA was highly expressed in the spinal dorsal root
ganglion (DRG), and hyperalgesia was reversed by administering APETx2, thereby block-
ing ASICs. Furthermore, the mechanical reactivity of C fibers in this model was a greater
in both the skin and the muscles [92]. These results therefore show that the ASIC3 present
at the peripheral level could modulate widespread hyperalgesia. Indeed, the increased
reactivity of C fibers at the skin level is similar to that observed in subjects with FM, and
this suggests that ASIC3 may be involved in modulating altered peripheral sensitivity.

The release of substance P from nociceptive nerve fibers and the activation of its
neurokinin 1 receptor (NK1), which is found post-synaptically in the spinal dorsal horn,
as well as on immune cells, smooth muscle, blood vessels and other peripheral cells,
seem to play an important role in the transmission of pain signals [93]. Substances that
inhibit substance P signaling pathways usually produce anti-nociceptive effects in animal
models [94,95]. Therefore, substance P is believed to promote pain. On the other hand,
NK1 antagonists have failed to produce analgesic effects in many clinical studies; therefore,
its function has yet to be clarified [96]. An unexpected anti-nociceptive role of substance P
was observed in muscle-afferent DRG neurons. In a mouse model of chronic mechanical
hyperalgesia induced by repeated intramuscular acid injections, the release of substance P
in the muscle appeared to play a physiological role in nociceptive plasticity and limited the
activation of muscle nociceptors induced by acid injection. This physiological mechanism
could be of therapeutic interest, as the administration of a selective NK1 agonist prevents
long-lasting hyperalgesia. In support of this hypothesis, animal studies have shown that
a single intramuscular injection of acid in tachykinin precursor 1 gene (Tac1) knockout
mice, which therefore lack substance P signaling, or the co-administration of NK1 receptor
antagonists induces long-lasting rather than transient hyperalgesia, as occurs in controls.
The anti-hyperalgesic effect of substance P was observed only in neurons expressing ASIC3,
where substance P increases M-channel-like potassium currents through the NK1 receptor
independently of protein G but in a tyrosine kinase-dependent manner. Thus, through
these works, intramuscular substance P was confirmed to mediate an unconventional NK1
receptor signaling pathway that led to an unexpected anti-nociceptive effect against chronic
mechanical hyperalgesia induced by repeated acid injections [97].

As previously mentioned, the chronic pain typical of FM is due to alterations in central
and peripheral sensitization. Over the years, researchers have searched for biomarkers that
are capable of detecting these changes. In particular, they focused on factors capable of



Int. J. Mol. Sci. 2021, 22, 3891 7 of 31

acting on the growth and survival of nerve cells, such as nerve growth factor (NGF). This
factor is indeed involved in promoting the growth, proliferation and survival of sensory
neurons that transmit pain, temperature and tactile sensations [98].

Data obtained in earlier studies showed an increase in NGF in the cerebrospinal fluid
of FM patients [99]. However, these data disagree with those from a recent study in patients,
in which plasma NGF levels were not found to differ between FM and control subjects.
In this regard, different statistical methods were used, which nonetheless led to the same
conclusions [100]. Further studies are therefore needed to understand the involvement of
NGF in the pathophysiology of FM.

2.1.2. Inflammation and Immunity

Increasing evidence indicates that neurogenic-derived inflammatory processes occur-
ring in the peripheral tissues, spinal cord and brain are also responsible for the pathophysi-
ology of FM [101–103]. In fact, the release of biologically active agents, such as chemokines
and cytokines, leads to the activation of the innate and adaptive immune system. All of this
translates into many of the peripheral clinical features reported by patients with FM, such
as swelling and dysesthesia, which can also affect central symptoms, including cognitive
changes and fatigue. In addition, the physiological mechanisms related to stress and
emotions are considered to be upstream drivers of neurogenic inflammation in FM [104].

Studies conducted in patients have confirmed that inflammation is involved in FM.
Indeed, FM patients have been shown to have enhanced circulating inflammatory cytokines
and inflammatory cytokines released by circulating immune cells [103,105].

Kadetoff et al. described an increased concentration of IL-8 in the cerebrospinal fluid of
FM patients compared to healthy subjects [106]. This finding could be due to the activation
of glial cells, which play an important role in the central sensitization process, as they
are activated in response to excitatory synaptic signals (glutamate) [107]. Furthermore,
since the synthesis of IL-8 is dependent on orthosympathetic activation, this could help
explain the correlation between stress and fibromyalgia symptoms [108]. In addition to
this, some studies have shown an increase in serum concentrations of IL-6, IL-8, IL-1β
and TNF-α in individuals with FM, although no clear correlation with symptom severity
has been identified, except, perhaps, for IL-6 [103,109–111]. It appears that immune cells
such as mast cells, monocytes and neutrophils, as mediators of inflammation processes,
may also have a function in defining an inflammatory substrate of fibromyalgia [112].
In animals, resident macrophages located in the muscle have been shown to contribute
to the development of chronic widespread muscle pain. For example, the removal of
macrophages at the acid injection site through a local injection of clodronate liposomes
is capable of preventing the development of exercise-induced hyperalgesia [89]. Another
observation is that pro-inflammatory cytokines, such as interleukins (IL-1β, IL-6) and tumor
necrosis factor (TNFα), can activate and sensitize nociceptors, induce pain in humans and
trigger hyperalgesia in animals. Another potential source of these cytokines is adipose
tissue; many studies suggest that diffuse or multifocal pain is more common in obese
individuals [113], and obese animals show enhanced nociceptive responses [114,115].
Therefore, pro-inflammatory cytokines could play a role in the generation of chronic
muscle pain, including FM.

Finally, a study by Smart et al. described a subgroup of fibromyalgia patients char-
acterized by ANA (anti-nuclear antibody) positivity, with the speckled pattern clearly
predominating. The use of the Smart Index, which corrects the erythrocyte sedimentation
rate value in relation to age, revealed that ANA-positive FM patients had a more pro-
nounced inflammatory response profile than the ANA-negative subgroup, suggesting that
autoimmunity potentially contributes to sub-inflammatory fibromyalgia [116].

2.1.3. Genetic Aspects

Over the years, studies have shown the potential involvement of genetic factors in
the onset of FM [117,118]. Linkage studies have shown a correlation rate of 50% between
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genetic variants and the development of chronic pain [119]. Currently, about 100 genes that
regulate pain are believed to be relevant to pain sensitivity or analgesia. The main genes are
those encoding for voltage-dependent sodium channels, GABAergic pathway proteins, mu-
opioid receptors, catechol-O-methyltransferase and GTP cyclohydrolase 1 [120]. The small
sample sizes did not allow the authors to confirm an association between single nucleotide
polymorphisms and FM susceptibility. However, a genome-wide linkage scan study found
that first-degree relatives had an increased risk of developing FM, reinforcing the genetic
hypothesis. The serotonin transporter gene (SLC64A4) and the transient receptor 2 potential
vanillic channel gene (TRPV2) are the major genes responsible for pain susceptibility in
FM [121]. SLC64A4 is characterized by a single nucleotide polymorphism and is associated
with chronic pain conditions (for example, mandibular joint disorder), as well as increased
levels of depression and psychological disorders related to an alteration in serotonin
reuptake [122]. The TRPV2 gene is expressed in mechano- and thermo-responsive neurons
in the dorsal root and trigeminal ganglia and appears to be responsible for reducing the
pain threshold in FM patients [123]. Other genetic polymorphisms that have been identified
and associated with FM susceptibility are in the serotonin transporter (5-HTT), catechol-
O-methyltransferase (COMT) and serotonin 2A (5-HT2A) genes. However, subsequent
meta-analyses could only confirm that the 102T/C polymorphism in the 5-HT2A receptor
is connected with FM [124]. Therefore, further studies are needed to understand the role
of these genes in chronic pain conditions such as FM. A genome-wide association and
copy number variant study in 952 FM cases and 644 controls revealed the existence of
two variables associated with FM. One variable is the single nucleotide polymorphism
rs11127292 in a gene similar to myelin transcription factor 1 (MYT1L), which is responsible
for neuronal differentiation and involved in cognitive alterations. The second is an intron
copy number variable in the neurexin 3 (NRXN3) gene, which normally acts as a receptor
and cell adhesion molecule in the nervous system, and variations in this gene are involved
in autism spectrum disorder [125]. Other researchers analyzed 350 other genes that are
specifically involved in pain treatment. Among these is the TAAR1 gene, which mediates
the availability of dopamine, whose reduction can increase the sensitivity to pain typical of
FM [126]. Another widely studied gene is RGS4, which is expressed in the dorsal horn of
the spinal cord, the locus coeruleus and the nuclei of the bed of the stria terminalis, and is
responsible for modulating the descending inhibition of pain perception [127]. One gene
studied and related to pain disorders is CNR1, which encodes the cannabinoid receptor
CB-1 [128,129]. Another gene presumably involved in central sensitization is GRIA4, which
mediates the rapid excitatory transmission of nociceptive signals in the central nervous
system [130]. Taken together, these studies have increased the current knowledge on FM
and support the genetic hypothesis as a potential factor in the pathogenesis of this disease.
However, as FM remains a multifactorial disease, further studies are needed to examine
haplotypes and combinations of different variants that could influence its development.

2.1.4. Endocrine Factors

The role of stress in the exacerbation of fibromyalgia symptoms has been widely
described from an epidemiological point of view through both self-reports and clinical
questionnaires. On the basis of these data, the hypothalamic–pituitary–adrenal axis, central
to the stress response, was examined. Despite the discrepancy between different studies on
possible alterations in plasma cortisol levels in FM patients, dysregulation of its circadian
variation is frequently observed. In particular, flattening of the plasma cortisol concentra-
tion curve was observed during the day: this seems to manifest itself through a milder
and more gradual descent compared to the morning peak of maximum concentration or
through a lowering of the peak itself [131–135]. In addition to this, decreased cortisol
secretion has also been described in response to adrenocorticotropic hormone (ACTH)
tests [136]. The hypothalamic–pituitary–adrenal axis (HPA) comprises neurotransmitter
and neuroendocrine response systems to stress and can be activated in FM [137]. This
system may explain some of the symptoms seen in FM.
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A patient study looked at levels of corticotropin-releasing factor (CRF) in cerebrospinal
fluid (CSF), heart rate variability (HRV) and pain symptoms (e.g., fatigue and depression) in
subjects with FM. The results obtained in this study showed that CRF levels were associated
with sensory and affective pain symptoms but not with symptoms of fatigue. Furthermore,
an increase in HRV was associated with an increase in CRF and pain in patients with
FM. These results were subsequently adjusted for age, sex and depressive symptoms, and
a correlation between CRF levels and sensory pain symptoms was confirmed. Another
important finding was that women with FM and self-reported histories of physical or
sexual abuse did not have increased levels of CRF in their CSF. This indicates that there
may be subgroups of FM patients with different neurobiological characteristics. Therefore,
further studies are needed to better understand the association between CRF and pain
symptoms in FM [138]. In another study, the association between salivary cortisol levels
and pain symptoms in patients with FM was assessed at different times of day. The results
obtained in this study revealed a strong relationship between salivary cortisol and pain
symptoms only at the time of awakening and the 1 h that followed in women with FM.
Furthermore, no relationship was observed between the cortisol level and symptoms of
fatigue or stress. These findings suggest that early-day pain symptoms are associated with
changes in HPA function in women with FM.

However, to date, the results regarding the involvement of the HPA in the patho-
physiology of FM have been conflicting, and new studies will be needed in the future to
fully clarify this aspect [133]. Furthermore, there are indications that total and free cortisol
levels are dissociated in FM patients. They have normal salivary and free plasma cortisol
despite having reduced total cortisol levels. A possible explanation for this finding is a
reduced concentration of glucocorticoid-binding globulin (CBG). Reduced levels of CBG
have been reported in FM patients compared to healthy patients. It is of particular interest
that chronic social stress can lead to reduced levels of CBG, while IL-6 and IL-1β, which
can also inhibit CBG production, may contribute further [139].

The possible pathogenetic role of the growth hormone (GH)/insulin-like growth factor
1 (IGF-1) axis was also investigated. Several studies have found that about one-third of
individuals with fibromyalgia have lower IGF-1 levels than control groups [140]. Serial
measurements at 12 to 24 h also showed a reduction in GH secretion in patients with
fibromyalgia, particularly at night. Since GH secretion occurs mainly during phase 3
of sleep and 80% of patients have sleep disturbances, it remains to be clarified whether
the nature of this alteration is primary or secondary [141]. Given the higher prevalence
of fibromyalgia in the female population, the role of estrogens in this pathology was
investigated. However, the results of various studies suggest that this role is limited, and
the only significant result is an increased serum concentration of the G protein-coupled
estrogen receptor (GPER) in patients with fibromyalgia compared to healthy subjects [142].
Although a strong correlation with the disease allows us to hypothesize the possible use of
this receptor as a potential diagnostic biomarker, the exact mechanism by which it fits into
the pathophysiological cascade remains unclear [143].

2.1.5. Psychopathological Factors and Poor Sleep

As previously highlighted, psychiatric comorbidities in fibromyalgia constitute a
relevant aspect of the disease, and a close correlation between stress and fibromyalgia
symptoms has been described several times. According to several studies, the prevalence of
psychiatric comorbidities, such as anxiety disorders and depression, among patients with
this pathology reaches 60% in certain subpopulations [144]. The presence of depressive
patterns has been shown to correlate with a worse prognosis: patients with comorbid
symptoms of depression seem to report pain of greater severity and duration as well as
a greater degree of hyperalgesia/allodynia than healthy controls. Furthermore, these
psychiatric aspects seem to have a certain predictive value in relation to various somatic
symptoms, including musculoskeletal pain and headaches [145]. The impact of depression
symptoms on pain processing is still unclear. A study in FM patients attempted to eval-
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uate this correlation by comparing the results of quantitative sensory tests and neuronal
responses to pressure stimuli (assessed by functional magnetic resonance imaging (fMRI))
with the levels of symptoms of depression. The results showed that the symptom levels of
depression were not associated with quantitative test results or with the extent of neuronal
activation in brain areas, such as primary and secondary somatosensory cortices, that
are associated with the sensory dimension of pain. However, symptoms of depression
were observed to be associated with the extent of pain-evoked neuronal activation in the
amygdala and contralateral anterior insula, which are brain areas associated with affective
pain processing. Therefore, these findings suggest the existence of parallel, possibly inde-
pendent, neuronal pain processing networks for sensory and affective pain elements [146].
Finally, the therapeutic aspect is an element that supports the pathogenetic overlap between
depressive disorder and fibromyalgia. The efficacy of treatment with antidepressant drugs
(e.g., serotonin-norepinephrine reuptake inhibitors (SNRIs) and tricyclics) has in fact been
described by numerous studies on FM patients and constitutes one of the main therapeutic
strategies in both FM and other chronic pain conditions, such as chronic headache and
irritable bowel (IBD), which are often symptoms of FM [147–149]. The efficacy of SNRIs
and other double-acting antidepressants, such as mirtazapine, suggests that neurotrans-
mission dysfunction of both serotonin and norepinephrine exists in FM [150]. Similar to
observations for the depressive pattern, stress also appears to be both a predictive and
negative prognostic factor. It has been shown that stress can modulate pain sensitivity
by inducing hyperalgesia or allodynia through alterations in the physiological circadian
secretion of cholesterol, therefore indirectly inducing the release of pro-inflammatory cy-
tokines and setting in motion the pathophysiological processes described above [151–153].
Animal studies have shown that stress induction (e.g., swimming stress and cold stress)
can produce muscle and skin hyperalgesia that lasts for weeks after the stressor [154–156].
On the other hand, milder stressors (e.g., fatigue and acoustic stress), which do not produce
hyperalgesia on their own, can cause an increase in and prolongation of the hyperalgesic
response to a subthreshold or mild noxious stimulus [32,157,158]. Other studies have
shown that animals exposed to stressors also exhibit changes in the spinal cord. In par-
ticular, animals showed a greater expression of c-fos in response to formalin, as well as
a reduction in the basal and induced release of the inhibitory neurotransmitter GABA; a
reduction in mu-opioid agonist antinociception enhanced the basal and evoked the release
of glutamate [159,160], suggesting both increased central excitability and reduced central
inhibition. In animals, stress-induced hyperalgesia was reduced by the spinal blockade
of substance P, calcitonin gene-related peptide (CGRP), NMDA-glutamate receptors and
neurokinin-1 receptors, all substances involved in the neurotransmission of pain [158]. At
the supraspinal level, cold stress-induced alterations were observed in the serotonergic
system, with reductions in both serotonin (5-HT) and 5-hydroxy indoleacetic acid (5-HIAA)
levels in the supraspinal regions [161]. Thus, stress and psychological factors are involved
in the development and severity of FM.

Sleep disorders are classically described within the symptomatic process of fibromyal-
gia. However, some recently reported data have generated the hypothesis that such
disorders may be included among the causative factors of this pathology, rather than
among its manifestations. Studies published in recent years have described a bidirectional
correlation between sleep disturbances and widespread musculoskeletal pain, and it even
seems that insomnia tends to precede the onset of pain and has predictive value regarding
its onset and its persistence [162,163]. Studies carried out in healthy subjects also seem
to show that total, partial and stage-specific sleep deprivation leads to hyperalgesia, an
increased incidence of spontaneous pain and mood alterations, particularly anxiety and
depression [164,165]. In a further study by Smith et al., the authors hypothesized that the
development or aggravation of somatic and psychiatric symptoms is secondary to sleep
discontinuity rather than sleep deprivation [166]. In addition to the number of awakenings,
the cyclic alternating pattern (CAP) is a useful tool to analyze this discontinuity. It is
represented by short cycles of periodic electroencephalographic activity of non-REM sleep,
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distinct from the background rhythm and with a periodicity of up to one minute [167].
CAP has been shown to be frequent in fibromyalgia patients and correlated with poor
quality of sleep and with the severity of pain observed in these patients [168].

Findings in human studies carried out through the application of evoked potentials
indicate that increased nociceptive sensitivity in response to sleep deprivation could derive
from dysregulation of the descending pathways of pain control or from cognitive amplifi-
cation of the central origin, thus excluding the mechanism of sensory amplification [169].
Biochemical analyses suggest that an insufficient amount of sleep could also play a facili-
tating role in nociception through the elevation of the serum concentration of IL-6, thus
entering the pathogenetic cascade with an inflammatory substrate [164]. The structural
analysis of sleep obtained by EEG studies provides additional support for the hypothesis
that sleep alterations are among the causative factors of fibromyalgia. One of the first
works on this aspect was a study by Moldofsky et al., in which microstructural analysis
identified the presence of a rhythm component typical of wakefulness within the non-REM
sleep pattern, particularly during periods of slow delta rhythm (0.5 to 2 Hz, characteristic
of deep sleep), among both fibromyalgia patients and healthy subjects deprived of the
deeper stages of alpha sleep (8 to 13 Hz). Moreover, in healthy subjects, deprivation was
accompanied by a set of musculoskeletal and psychological symptoms similar to those
chronically reported by patients. In light of these data, a hypothesis was put forward that
considered fibromyalgia, then called fibrositis, to be a “non-restorative sleep syndrome”, in
which an arousal mechanism (presumably responsible for the alpha component) interferes
with non-REM sleep and its restorative function, consequently generating mood alterations
and characteristic somatic disturbances [170]. More recent human studies have described
the mechanisms underlying alpha-delta sleep (ADS, the intrusion of alpha rhythms in
the deep phases of sleep), highlighting the role played by the thalamus, which, in turn, is
modulated by GABAergic and cholinergic afferents [171,172]. It has been observed that
the ADS phenomenon manifests itself in three different patterns: phasic (contemporary
with delta activity), tonic (continuous throughout NREM sleep) and low alpha activity.
Among these, the phasic pattern appears to be the most common among fibromyalgia
patients and is the one that correlates most strongly with symptoms such as insomnia and
pain [173]. It should be noted, however, that alpha-delta sleep is not an exclusive feature of
fibromyalgia: it is also seen in a number of chronic pain syndromes and in some healthy
individuals. Unlike alpha activity, the functional anatomical substrate of sleep spindles
has been extensively studied. These are trains of electroencephalographic waves with
a frequency between 12 and 16 Hz, lasting between 0.5 and 1.5 s and recurring every 3
to 10 s, and characteristic of non-REM (NREM) sleep, particularly the N2 stage of sleep
(intermediate sleep). Sleep spindles are generated by the rhythmic firing of thalamic relay
neurons, and their role is central in the induction and maintenance of NREM sleep, as well
as in the gating mechanism through which transmission and the consequent cortical re-
sponse to both internal and external stimuli are attenuated during sleep (control of arousal
status) [174–177]. The frequency of spindles during NREM sleep is modulated by a series
of factors, including age (inverse proportionality) and a certain degree of interindividual
variability, as well as various pathological conditions in the neuropsychiatric field, such as
depression, anxiety and stress [178]. A study by Landis et al. described a reduction in the
frequency and amplitude of sleep spindles in a population of women with fibromyalgia
compared to a control group, proposing the hypothesis of a dysfunction of the thalamo-
cortical circuits underlying this alteration [179]. In a rat study, a deep learning method,
known as SpindleNet, was applied to characterize sleep spindle activity in animals with
induced chronic pain [180]. The results showed a correlation between a decrease in the
frequency of spindles during NREM sleep and the level of chronic pain and allodynia,
suggesting that this finding could be a biomarker of chronic pain as well as a target for
neuromodulator therapy [181]. It is therefore possible to hypothesize that a dysfunctional
primitive thalamus causes an alteration in its spindle pacemaker activity and alpha activity,
compromising the restorative function of sleep and consequently generating the somatic
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and psychological symptoms of fibromyalgia, similar to what was suspected by Moldofsky
et al. In light of the important function of the thalamus in sensory transmission pathways,
it can also be hypothesized that both sleep disturbances and hyperalgesia/allodynia are the
direct result of thalamic alteration, representing independent manifestations of the same
pathological process. The relationship between sleep disturbances and fibromyalgia has
not yet been fully clarified, and new studies will be needed to better define the relationship
between the two. At the moment, the main hypotheses converge in their proposal of a
bidirectional correlation characterized by a positive feedback circuit.

3. Pain Amplification in FM

Peripheral impulses are transmitted to the central nervous system by myelinated Aδ

and unmyelinated C fibers. Pain signals travel through Aδ fibers very rapidly (~10 m/s)
to the central nervous system, while those mediated by C fibers travel relatively slowly
(~1.6 m/s) [182]. Numerous clinical studies performed in patients with FM have shown
that small unmyelinated C fibers and myelinated A fibers are both involved in peripheral
neuroinflammation in FM [183,184]. Both Aδ and C fibers are found mainly in superficial
organs, such as the skin. On the other hand, deep somatic structures, such as muscles and
joints, are mainly supplied by C fibers. Aδ fibers are activated by thermal or mechanical
stimuli and generally cause a pain sensation of short duration. However, C-fiber activation
is caused by thermal, mechanical or chemical stimuli, which often result in poor localization
and a widespread pain sensation typical of FM [185]. In addition to this direct path from the
periphery to the spinal cord, antidromic propagation of the impulse also occurs, whereby
the impulse is sent back to junction points towards the terminal of the C fiber, with the
consequent release of pro-inflammatory substances [186,187]. C fibers, therefore, drive the
release of pro-inflammatory cytokines and chemokines and neuropeptides; conversely, A
fibers generally respond to these stimuli. This leads to a greater sensitivity of the neuron to
second stimuli with the amplification of reactivity. This phenomenon is called peripheral
sensitization. It was also observed that the function of C fibers is influenced not only by
local factors but also by systemic ones. Explaining multifactorial diseases such as FM
appears to be very difficult with the linear reductionist medical model. In this regard,
a more coherent picture can be derived from paradigms originating from the theory of
complexity. FM is thought to represent the degradation of the autonomic nervous system
in a failed attempt to adapt to a hostile environment. Complex control systems are known
to have fractal structures, and fractal heart rate variability (HRV) reflects the performance
of the autonomic nervous system. Therefore, a group of researchers attempted to measure
the fractal scaling index of HRV in subjects with FM and correlate this value with clinical
symptoms. The results of this study reveal that the alpha-1 fractal exponent of the heart rate
is altered in patients with FM. This suggests a rigidity in the performance of the autonomic
nervous system, thus supporting the idea that FM represents the degradation of the main
complex adaptive nervous system [188,189].

In addition, animal studies have shown that this nervous system can modulate both
peripheral neurons and innate immune cells, keratinocytes and dendritic cells by over-
expressing α1-adenoreceptors [190,191]. The link between the peripheral consequences
of sympathetic hyperactivity and central neuroinflammation has not yet been elucidated.
For example, elevated levels of IL-8 but not IL-1β are observed in the CSF of FM patients,
suggesting central neuroinflammation [106].

Other findings that have been observed in approximately 50% of FM patients are
abnormalities in the morphology, neurophysiology or function of both myelinated small Aδ

fibers and unmyelinated C fibers [73,75]. These data have been confirmed by studies that
used microneurography to demonstrate structural changes in C fibers and the associated
Schwann cells [76,192]. Another association that has been noted in FM is between miR-let-
7d microRNA and a low density of nerve fibers. Furthermore, the aberrant expression of
miR-let-7d and insulin-like growth factor 1 was observed in the skin of patients with FM
who had alterations in their small fibers [193]. The underlying cause of all these results
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concerning small peripheral fibers is not clear, but it seems to be related to the consequences
of local neurogenic inflammation owing to the effects that inflammatory products have on
these sensory fibers.

Furthermore, in vivo, a decrease in the density of peripheral nerve fibers of the hind
leg was demonstrated in a rat model of FM, which was induced by increasing glutamate
levels [194]. This shows that changes in small fibers are related to alterations occurring in
the brain in a top-down process. An important factor in this mechanism appears to be a
reduction in the activity of descending antinociceptive pathways that interact and modulate
pain-transmitting neurons of the activated dorsal horn. Typically, these pathways go from
the subcortical structures down to the spinal cord. Furthermore, they are normally active
and inhibit the upward transmission of the pain signal. When this inhibition is reduced,
the pain sensation is amplified. Abnormal and higher pain processing is also observed
at the CNS level [195,196]. A similar mechanism could also be involved in humans. In
this regard, clinical studies have shown that the increase in nociceptive activity in muscles
and other tissues following neurogenic inflammation could further contribute to central
sensitization through a greater non-cyclical input into the spinal cord [20,197].

4. Diagnostic Biomarkers

The diagnosis of FM is currently based only on a complete clinical evaluation; until
2010, it relied on the 1990 ACR criteria [198] of widespread pain, with at least three
consecutive months of pain and [199] “pain points” with digital palpation. New ACR
criteria have been used since 2010 and are based on two new parameters: the diffuse
pain index and the score on the symptom severity scale, both somatic and cognitive [9].
Tender points and the algometric measure of the pressure pain threshold are still important
factors for a complete musculoskeletal clinical examination and for the exclusion of other
diagnoses [200]. In 2016, the previous criteria were revisited to decrease the probability
of an incorrect FM diagnosis [10]. However, individual phenotypic variability and the
coexistence of other pathologies can lead to clinical examinations that are inadequate for
a precise diagnosis, making it impossible to decide on universal criteria for this disease.
Furthermore, specific biomarkers do not yet exist, and the research is therefore directed
towards studying new indicators for the objective diagnosis of affected individuals through
the identification of the genetic, environmental and epigenetic factors underlying the
physiopathology of FM [201,202] (Table 1).

Table 1. Candidate genes in the pathogenesis of FM [202].

Gene Type of Study References

5-HTT Human [203–206]
COMT Human [207–210]
TAAR1 Human [211]

Opioid receptor µ1 gene A118G Human [212]
RGS4 Human [121,211]
CNR1 Human [211,213]
GRIA4 Human [211,213,214]

SLC64A4 Human [215,216]
TRPV2 Human [214,215,217]
MYT1L Human [214]
NRXN3 Human [125,215]
CYP450 Human [218]
BDNF Human [219–223]
NAT15 Human [224]
HDAC4 Human [224]
PRKCA Human [224,225]
RTN1 Human [224]

PRKG1 Human [224]
SLC1A5 Human [226]

SLC25A22 Human [226]
GRM6 Human [226]
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4.1. Genetic Approach

The prevalence of fibromyalgia in family clusters and several studies supports the the-
ory that genetic factors, in conjunction with environmental causes such as trauma, illnesses
or emotional stress, could predispose individuals to FM. Key gene polymorphisms that
are regarded as risk factors for fibromyalgia are those that are involved in mood disorders,
although some findings are controversial. These candidate genes include the serotonin
transporter (5-HTT), the serotonin 2A (5-HT2A) receptor, catechol-O-methyltransferase
(COMT) and the dopamine receptor.

A higher frequency of the S/S genotype of the 5-HTT gene was observed in FM
patients compared to in healthy subjects [205]. However, this association may be limited to
subjects with concomitant affective disorders, as it has not been confirmed in FM patients
without depression or anxiety [206]. A reduction in the dopamine D4 receptor gene was
also observed in FM patients [227]. With regard to COMT, homozygous low activity
(Met/Met) and heterozygous low activity (Val/Met) genotypes were predominant in FM
patients, while the homozygous high activity (Val/Val) genotype was less frequent [228].
In particular, the Met/Met genotype appears to be associated with greater disease severity
in the domains of pain, fatigue, sleep disturbances and stress. In addition, compared to
those with the Val/Met or Val/Val genotype, patients with the Met/Met polymorphism
reported a greater decline in a positive attitude on days when the pain was greater [229].
A lower frequency of the 118 G allele of the µ1 opioid receptor gene was also found in
patients with FM [212]. Furthermore, FM and its severity appear to be associated with
various polymorphisms of the adrenergic receptor gene [230].

Other genes that have been associated with FM and that regulate nociceptive and
analgesic neuronal pathways are the receptor 1 gene (TAAR1), the G protein signal 4 regu-
lator gene (RGS4), the cannabinoid receptor 1 gene (CNR1) and the ionotrophic glutamate
receptor gene AMPA 4 (GRIA4) [211].

Genome-wide association studies aiming to identify genes potentially involved in the
pathogenesis of fibromyalgia have reported that genetic factors may be responsible for up
to 50% of vulnerability to the disorder. SLC64A4, TRPV2, MYT1L and NRXN3 are possible
candidate genes found to be related to fibromyalgia. The frequency of polymorphisms in
selected metabolism genes such as CYP P450 in FM pathology was also reported in another
study [218].

In addition, a gene–environment association involving epigenetic changes was sug-
gested as a triggering mechanism: fibromyalgia appears to be particularly characterized by
a hypomethylated DNA pattern in genes involved in the stress response, DNA repair, the
autonomic system response and subcortical neuronal abnormalities. In multiple tissues, dif-
ferences were observed in the genome-wide expression profile of microRNAs, suggesting
the involvement of various processes in the pathogenesis of fibromyalgia. Single nucleotide
polymorphisms (SNPs) have been identified as possible candidates that are directly linked
to FM susceptibility.

4.2. Epigenetic Modifications

Previous studies have shown that early life experience and environmental factors in
general may modulate genome function and the phenotype through epigenetic mecha-
nisms without changing the DNA sequence [231]. In chronic pain, epigenetic pathways
have been shown to play a significant role in mediating long-term changes in the central
and peripheral nervous systems [232]. In particular, changes in the state of methylation,
histone modifications and the expression of miRNAs seem to arise in the presence of
peripheral inflammation and nerve damage in pain-related regions [233,234]. As a valuable
diagnostic method, epigenetic modifications (such as DNA methylation) should be further
investigated. The BDNF, NAT15, HDAC4, PRKCA, RTN1 and PRKG1 genes were mapped
to differently methylated sites, indicating the potential involvement of FM nervous system
development, skeletal/organ system development and chromatin compaction pathways.
Differentially methylated sites that correlated with the FM map were frequently identi-
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fied in genes involved in biological functions such as DNA repair, immune response and
membrane transport genes.

4.3. MicroRNAs as Novel Possible Biomarkers

At least 30 percent of human genes are regulated by microRNAs [235], each of which
can repress hundreds of genes [236]. The existence of microRNAs in various cellular
compartments and their stability in the extracellular environment make them promising
biomarkers to better understand the etiology of complex diseases such as FM.

Argonaute proteins may be packaged with miRNAs in exosomes and transported in
biological fluids. In chronic pain conditions, miRNAs were observed to play a fundamental
role [237], in which they modify the expression of signaling molecules, transmitters, ion
channels or structural proteins, leading to the production of long-term hyperexcitability in
peripheral nociceptive neurons and CNS [238].

A genome-wide expression profile analysis of microRNAs in the CSF of females
with FM [239] demonstrated a relationship between human miRNAs and unusual FM
symptoms, and only miR-145-5p was strongly linked to pain and fatigue in FM patients.
Another study revealed a six- to 13-fold inhibition of five miRNAs—miR-451a, miR-338-
3p, miR-143-3p, miR-145-5p and miR-223-3p—in FM patients compared to controls [239].
Masotti et al. [240] specifically selected FM patients for their study: the expression of
six miRNAs (miR-23a-3p, miR-1, miR-133a, miR-346, miR-139-5p and miR-320b) was
downregulated in FM patients in comparison with controls. Interestingly, miR-23a was
downregulated in both the CSF and serum of patients with FM, although it was not
significantly correlated with FM symptoms [239].

These polymorphisms are also correlated with psychiatric conditions; thus, they may
be linked to psychiatric comorbidities instead of fibromyalgia alone. In addition, genetic
findings are always ambiguous, and fibromyalgia has not been closely related to any single
candidate gene.

4.4. Gene Expression

Since gene expression is modulated by epigenetic pathways, studies have compared
transcriptional changes between FM patients and controls. A previous study identified
482 genes differentially expressed between patients and healthy controls, and the results
indicated a relationship between FM status and the upregulation of inflammatory cytokine
genes (IL10, IL25 and 1L36A) [226]. In addition, several genes in the solvent solute carrier
family were found to be upregulated in FM subjects, including SLC1A5 and SLC25A22,
which encode glutamate transporters in the CNS [241]. In FM subjects, the metabotropic
glutamate receptor (GRM6) gene encoding the group III G protein-coupled receptor, which
is associated with the inhibition of the cyclic AMP cascade and involved in neuropathic
pain signaling in dorsal horn neurons, was also upregulated [242]. The alteration of these
paths [241,242] may be important in FM pathogenesis and must therefore be validated
in a broad, separate, multicenter cohort of subjects with higher clinical heterogeneity.
Furthermore, no studies have examined whether the observed changes in gene expression
represent epigenetic mechanisms.

4.5. Mu-Opioid Receptor on B Lymphocytes as a Biomarker

It is important to note that the endogenous opioid system is similar to the immune
system due to the presence of opioid receptors on the lymphocyte membrane. Among
these receptors, the Mu-opioid receptor on B lymphocytes has been proposed as a specific
biomarker for FM patients. The results obtained from a recent study showed a lower
percentage of Mu-positive B cells in subjects with FM than in controls. Therefore, this
receptor could be used as a biomarker for the objective diagnosis of patients who report
chronic pain, such as that perceived by patients with FM [243].
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5. Serological Markers

There is considerable interest in using a simple blood test to diagnose fibromyalgia.
Therefore, several attempts have been made to detect unique serological markers. These
findings, as well as those of genetic testing, are frequently contradictory, and no clinical
tests have yet been confirmed to date (Table 2).

Table 2. Blood markers for FM diagnosis.

Markers Type of Study References

Classic autoantibodies (SS-A/Ro, SS-B/La, ANA, and RF)
Specific autoantibodies (SP-1, CA6, PSP) Human [244–248]

Neuropeptides Human [249–251]

BDNF Human [220,252]

Glutamate Human [253,254]

Inflammatory cytokines Human [102,255,256]

Proteomic analysis Human [257]

Metabolomic analysis Human [258–263]

5.1. Autoantibodies

The association between antipolymer antibody (APA) and fibromyalgia was assessed
because APAs were present in the serum of women with fibromyalgia-like signs [264].
One study analyzed the serum APA concentration of fibromyalgia patients, tension-type
headache patients and safe controls. APAs were found in just 17.6% of fibromyalgia patients,
confirming the lack of diagnostic significance of APA [265]. Two other autoantibodies—
anti-68/48 kDa and anti-45 kDa—have been identified as potential markers for certain
clinical subsets of primary fibromyalgia and chronic fatigue syndrome, as well as for
secondary fibromyalgia/psychiatric disorders [245]. Antiserotonin, antiganglioside and
antiphospholipid antibodies have been shown to be higher in patients with fibromyalgia as
well as those with chronic fatigue syndrome, supporting the hypothesis that fibromyalgia
and chronic fatigue syndrome belong to the same clinical entity and manifest themselves as
“psycho-neuro-endocrinological autoimmune disorders” [266]. Another group investigated
the prevalence and possible diagnostic significance of antiserotonin, antithromboplastin
and antiganglioside in fibromyalgia patients. The authors reported an elevated prevalence
of serotonin and thromboplastin antibodies but concluded that they had no diagnostic
relevance [267]. Later, the association between thyroid autoimmunity and fibromyalgia
was confirmed [268]. Pamuk and Cakir also reported a higher frequency of thyroid au-
toimmunity in fibromyalgia patients [269]. The correlation between rheumatic and thyroid
disorders has long been recognized, with rheumatoid arthritis, Sjögren’s syndrome and
systemic lupus erythematosus being the most prominent associations. In a subsequent
work, Bazzichi et al. [270] also observed that the occurrence of thyroid disease aggravated
FM symptoms. In particular, FM comorbidity was assessed in patients with Hashimoto’s
thyroiditis (HT) with or without subclinical hypothyroidism (SCH) and in patients with
SCH alone [270]. Other authors who studied the role of the thyroperoxidase antibody
(TPO Ab) have also reported results that implicate the thyroid in the etiopathogenesis of
FM [271]. A high prevalence of thyroid autoantibodies in FM patients has been shown
in repeated studies, but the role of TPO Ab in FM remains unclear [271]. Therefore, the
proposed antibodies have not yet been validated as potent, useful diagnostic biomarkers
for fibromyalgia, and further studies are required. The measurement of amino acids in the
plasma of FM patients is another area of interest. In the plasma of FM patients, Maes et al.,
found substantially lower levels of branched-chain amino acids, and they hypothesized
that this deficiency could lead to a lack of energy supply and altered protein synthesis in
the muscles [272]. In addition, an Italian research group also reported improvements in the
levels of many amino acids in FM patients [273]. The plasma levels of 20 amino acids from
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34 FM patients were analyzed, and significantly lower levels of taurine, alanine, tyrosine,
valine, methionine, phenylalanine and threonine were found; these results may suggest
the potential intestinal malabsorption of the amino acids mentioned [273].

5.2. Neuropeptides

Neuropeptide Y has been shown to both decrease and induce pain. Crofford and his
colleagues were the first to test plasma neuropeptide Y levels in patients with fibromyalgia
and found that they were substantially lower in the analyzed patients than in normal
subjects [131]. These results are inconsistent with Anderberg’s subsequent findings of
substantially elevated plasma levels of neuropeptide Y in patients with fibromyalgia
relative to healthy subjects [274]. In addition, the serum levels of neuropeptide Y were
shown to be substantially higher in subjects with fibromyalgia than in healthy controls in
two different studies [249,265]. Another neuropeptide studied extensively in fibromyalgia
patients and mice is substance P [275,276]. The results of one study suggested that substance
P caused sleep disturbances in mice [276]. Subsequently, an elevated level of substance P
was reported to be a likely cause of sleep disturbances in fibromyalgia patients [275,276].

5.3. BDNF

Some studies have also indicated the involvement of BDNF in pain syndromes [252].
Based on these data, Laske and collaborators were the first to examine serum BDNF
concentrations in patients with fibromyalgia and found that their levels were dramatically
increased compared to healthy controls. Two separate groups observed substantially higher
levels of BDNF in the plasma and cerebral spinal fluid of fibromyalgia patients than in
controls, suggesting the involvement of BDNF in fibromyalgia pathophysiology [220,277].

5.4. Glutamate

Compared to healthy controls, fibromyalgia patients displayed higher levels of gluta-
mate compounds in the right amygdala, and pain was associated with elevated levels of
glutamate in the left thalamus [278]. These results have implications for possible therapies
directed against glutamate receptors; however, more research is desirable to determine
whether these findings are applicable to other functional pain syndromes.

5.5. Inflammatory Cytokines

Cytokines have been suggested to be involved in fibromyalgia syndrome, but the
findings tend to be controversial, particularly because there have been reports of increases,
decreases and no substantial changes. It has been repeatedly shown that IL-8, a pro-
inflammatory cytokine, is increased in fibromyalgia patients. Given that IL-8 promotes
sympathetic pain, it may play an important role in the frequency of pain in fibromyalgia.
The IL-8 expression pattern could aid in the diagnosis of fibromyalgia and in effective
treatment strategies if confirmed in further studies [271].

5.6. Proteomic Approach

It has become generally accepted in the last few years that the genome represents
only the first layer of complexity. Biological functions are dependent on a complex pro-
tein population, and protein characterization can reveal posttranslational changes (e.g.,
phosphorylation, glycosylation and methylation) and provide insight into protein–protein
interactions and functions. For this reason, the field of proteomics, which is the identifica-
tion of proteins in biological samples such as body fluids and tissue extracts, is receiving
growing interest. Whole saliva analysis was performed to measure the protein content
and to evaluate quantitative or qualitative differences between patients with fibromyalgia
and healthy subjects [279]. For example, compared to healthy subjects, cyclophilin A was
overexpressed in fibromyalgia patients [279]. Other proteins found to be overexpressed in
fibromyalgia were calgranulins, belonging to the S100 multigene family, which is involved
in a range of intracellular activities, such as cell proliferation and differentiation, cytoskele-
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tal interactions, membrane rearrangement and structural organization, intracellular Ca2+

homeostasis, cell migration, inflammation and defense against oxidative cell damage [279].
Transaldolase and phosphoglycerate mutase 1 were also found to be substantially over-
expressed in fibromyalgia patients relative to their levels in controls [279]. Researchers
observed, however, that several proteins were expressed differently: calgranulin A, calgran-
ulin C, cyclophilin A, profilin 1, Rho guanosine diphosphate (GDP)-dissociation inhibitor
2, proteasome subunit-a-type-2 and haptoglobin-associated protein precursor [279]. These
proteins play important roles in the immune response, the remodeling of the cytoskeleton
and the inflammatory process, but their role in FM continues to be controversial. Further-
more, serum proteome profiles revealed dysregulated proteins and pathways associated
with fibromyalgia syndrome in women. Upregulated inflammation, as observed in the
study of serum proteomics, plays a major role in the pathogenesis of FM [257]. Combining
METTL18, IGLV3-25, IL1RAP and IGHV1OR21-1 levels can successfully distinguish FM
patients from pain-free controls. In the future, differentially expressed proteins could serve
as potential biomarkers for FM diagnosis and clinical assessment [257].

5.7. Metabolomic Approach

In an untargeted 1H NMR metabolomics examination of urine samples, a group of
clinically well-defined female FM patients with no psychiatric co-morbidities could be
completely distinguished from a group of young healthy women [261]. The presence of
metabolic markers of disturbances (hippuric, 2-hydroxyisobutyric and lactic acids) in the
gut microbiome supports the paradigm that control of the gut–brain axis is impaired by
stress-related disorders such as FM. For the distinction between FM patients and controls,
three metabolite markers (taurine, creatine and succinic acid) were important and were
also effective measures of pain and fatigue symptoms in FM syndrome [261]. However,
further studies are still needed.

6. Antioxidants and Diet for Fibromyalgia Management

Fibromyalgia patients produce higher levels of harmful free radicals than healthy
people and have a decreased antioxidant ability, contributing to oxidative stress. Compared
to other areas of the body, the central nervous system is highly susceptible to ROS because
of its high lipid content [280]. The progression of fibromyalgia may be dependent on in-
creased ROS. Treatment with antioxidants and vitamins, in addition to antidepressants and
structural analogs of gamma-aminobutyric acid, was able to change the florid symptoms of
FM patients [281]. Certain groups of bioactive compounds derived from medicinal plants
have also demonstrated analgesic activity and antioxidant properties with respect to FM:
these include essential oils [282], extracts [283], monoterpenes [284], sesquiterpenes [285]
and alkaloids [286] (Table 3).
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Table 3. Compounds with antioxidant and analgesic properties for FM management.

Compound Effects References

Melatonin

In an animal study, melatonin was able to improve behavioral defects, oxidative and
nitrosative stress, mast cell infiltration and activation of microglia in a
reserpine-induced FM model.

[287]

In a clinical trial, the exogenous administration of 10 mg of melatonin once every 24 h
increased endogenous pain inhibition, assessed on a numerical scale (0–10). The
combination of amitriptyline and melatonin provided better results than amitriptyline
alone, as calculated by the visual analog pain scale, in subjects with FM.

[288]

A randomized trial found that melatonin alone or in combination with fluoxetine was
beneficial for the treatment of FM. Using melatonin (3 or 5 mg/day) in combination
with 20 mg/day fluoxetine caused a significant reduction in both total and individual
components of the Fibromyalgia Impact Questionnaire score compared to the
pretreatment values.

[289]

Coenzyme
Q10

CoQ10 treatment showed effects on clinical symptoms, blood mononuclear cells and
markers of mitochondrial and oxidative stress in women with FM. [290]

The results of this clinical study suggest that CoQ10 supplementation plays a role in
the modulation of mitochondrial dysfunction and oxidative stress that induce
headaches in individuals with FM.

[291]

In a clinical study, CoQ10 supplementation was shown to provide additional benefits
for relieving pain sensation in FM patients treated with pregabalin, possibly by
improving mitochondrial function, reducing inflammation and decreasing
brain activity.

[292]

Vitamins D
and E

A clinical study found that women with FM had a lower qualitative and quantitative
intake than control subjects. In particular, an association has been found between
vitamin D deficiency and FM. However, its role in FM pathophysiology and the
clinical relevance of its identification and treatment requires further clarification. Only
vitamin E appears to be related to quality of life and pain sensation.

[117,293,294]

Palmitoylethanolamide
(PEA)

PEA is a major anti-inflammatory, analgesic and neuroprotective mediator in central
and peripheral organs and systems and acts on several molecular targets. [295,296]

PEA is emerging as a candidate biomarker due to its anti-inflammatory and
anti-hyperalgesic effects via the downregulation of mast cell activation. Preclinical
and clinical studies support the idea that PEA merits further consideration as a
therapeutic approach for controlling inflammatory responses, pain, related peripheral
neuropathic pain and symptoms of FM.

[297–306]

7. Conclusions

FM is a complicated syndrome characterized by chronic pain, joint rigidity, fatigue,
sleep interruption, cerebral dysfunction and depression. Research on FM is becoming
progressively more significant because of the compromised quality of life of patients and
the economic weight on the medical care system. The pathogenesis of fibromyalgia is not
well known, and the diagnosis is only clinical at present. Oxidative stress, mitochondrial
dysfunction, multivitamin deficiencies and a disproportion between oxidants and antioxi-
dants are interesting and clinically attractive topics that require further study to clarify the
state and development of FM.

To date, no objective tests or biomarkers with sufficient diagnostic accuracy have
been identified, and current analyses can only indicate a predisposition to fibromyalgia.
Numerous studies, however, provide insights into the pathophysiology of fibromyalgia.
Proteomic research as well as gene expression profiling may have potential applications as
novel methods for the diagnosis of FM.

Pharmacological treatment alone is inadequate for the majority of patients who suf-
fer from FM syndrome. Given the different mechanisms of pain sensitivity, treatments
will continue to involve multidisciplinary programs that target the peripheral, central,
cognitive-emotional and interpersonal causes of the chronic pain that characterizes FM
pathophysiology.
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