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Myalgic encephalomyelitis/chronic fatigue syndrome is a serious illness of unknown

etiology, characterized by debilitating exhaustion, memory impairment, pain and sleep

abnormalities. Viral infections are believed to initiate the pathogenesis of this syndrome

although the definite proof remains elusive. With the unfolding of COVID-19 pandemic,

the interest in this condition has resurfaced as excessive tiredness, a major complaint

of patients infected with the SARS-CoV-2 virus, often lingers for a long time,

resulting in disability, and poor life quality. In a previous article, we hypothesized that

COVID-19-upregulated angiotensin II triggered premature endothelial cell senescence,

disrupting the intestinal and blood brain barriers. Here, we hypothesize further that

post-viral sequelae, including myalgic encephalomyelitis/chronic fatigue syndrome, are

promoted by the gut microbes or toxin translocation from the gastrointestinal tract

into other tissues, including the brain. This model is supported by the SARS-CoV-2

interaction with host proteins and bacterial lipopolysaccharide. Conversely, targeting

microbial translocation and cellular senescence may ameliorate the symptoms of this

disabling illness.

Keywords: endothelial cells, cellular senescence, gut microbial community, endotoxin tolerance, microbial

translocation

INTRODUCTION

Excessive accumulation of senescent cells in body tissues has been associated with organismal
aging and fatigue as observed in older individuals and patients treated with anticancer agents
(Sanoff et al., 2014; Rajeevan et al., 2018; Xu et al., 2018). On the other hand, preclinical
studies have reported that the selective elimination of senescent cells could alleviate not
only some chemotherapy adverse effects but also various age-related symptoms, including
muscle weakness, fatigue and frailty, suggesting a potential treatment modality for myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS) (Demaria et al., 2017; Short et al., 2019;
Kaur et al., 2020; NCT03675724).

Long lasting myalgia and exhaustion were reported in over 40% of COVID-19 patients,
indicating that the SARS-CoV-2 virus may directly invade skeletal muscles, triggering myositis
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(Chen G. et al., 2020; Huang et al., 2020; Kucuk et al.,
2020). Indeed, as muscle cells express abundant angiotensin
converting enzyme-2 (ACE-2), the virus likely exploits the
myocytes, engendering disabling symptoms such as fatigue and
weakness (Ferrandi et al., 2020; Jin and Tong, 2020; Mao et al.,
2020). For example, preclinical studies have demonstrated that
SARS-CoV-2-upregulated angiotensin II (ANG II) disrupts the
muscle cell autophagy, impairing both the metabolism and
contractility (Neel et al., 2013; Silva et al., 2019). However,
aside from directly accessing the myocytes, this virus can
induce myopathy, muscle weakness and atrophy indirectly by
upregulating proinflammatory cytokines, such as interleukin 1
beta (IL-1β) and 6 (IL-6), C-reactive protein (CRP), and tumor
necrosis factor (TNF) (VanderVeen et al., 2019; Guidon and
Amato, 2020; Jin and Tong, 2020). When persistent, exertional
and unrelieved by rest, myopathy may gradually morph into
ME/CFS, a severe illness, affecting up to 2.5 million Americans
(Blomberg et al., 2018; Friedman, 2019).

The National Academy of Medicine (former Institute of
Medicine) 2015 ME/CFS diagnostic criteria include 6 months
or longer of post-exertional malaise and unrefreshing sleep
along with either cognitive impairment or orthostatic intolerance
(Cortes Rivera et al., 2019). Tiredness and exhaustion are
non-specific symptoms that may be experienced as central
or “brain fog,” muscular and post-infectious, emphasizing
the multifactorial nature of this condition (Greenberg, 2002;
Yamashita, 2020). Indeed, the ME/CFS etiology includes
genetic pre-disposition, inflammation, metabolic dysfunction,
gastrointestinal pathology, autoimmunity, and viral infections
(Jason et al., 1999; Ortega-Hernandez and Shoenfeld, 2009;
Scherbakov et al., 2020).

During the COVID-19 pandemic, interest in ME/CFS has
resurfaced as disabling fatigue, experienced by many patients,
often lingers long after recovery, lowering the life quality (Wilson,
2020). Indeed, novel studies have reported ME/CFS in the
aftermath of influenza and coronavirus infections, connecting
viruses to the pathogenesis of severe exhaustion (Moldofsky
and Patcai, 2011; Mohabbat et al., 2020; Poole-Wright et al.,
2020). Along these lines, COVID-19 was demonstrated to alter
several pathways previously associated with ME/CFS, suggesting
that a better understanding of the virus/host interactome may
elucidate the molecular underpinnings of this disease. Indeed,
the viral crosstalk with several human proteins expressed
by the intestinal epithelial cells (IECs) and endothelial cells
(ECs) may alter the intestinal barrier, enabling microbial
translocation from the gastro-intestinal (GI) tract into other
tissues, including the brain (Maes and Leunis, 2008; Maes et al.,
2014; Navaneetharaja et al., 2016; Proal and Marshall, 2018;
Figure 1).

In an earlier paper, we proposed that premature EC senescence
could increase the permeability of intestinal and blood-brain
barrier (BBB), contributing to COVID-19 critical illness and
its long-term sequelae (Sfera et al., 2020; Figure 1). Subsequent
studies endorsed this model by demonstrating that aside
from ACE-2, the SARS-CoV-2 virus can access host cells
via dipeptidyl peptidase-4 (DPP4) and neuropilin-1 (NRP-1),
receptors associated with ECs senescence (Kim et al., 2017;

Issitt et al., 2019; Cantuti-Castelvetri et al., 2020; Chen Z.
et al., 2020; Solerte et al., 2020). Further proof came from the
reports linking the renin-angiotensin system (RAS) to accelerated
aging via ANG II-induced telomere attrition demonstrated in
both COVID-19 critical illness and Hutchinson-Gilford progeria
(HGP) (Regenass et al., 1994; Herbert et al., 2008; Gerhard-
Herman et al., 2012; Amraei and Rahimi, 2020; Aviv, 2020;
Benetos et al., 2020; Bidault et al., 2020; Libby and Lüscher,
2020).

In the present hypothesis article, we surmise that COVID-
19 sequelae, including the ME/CFS, may be caused by ANG
II-inflicted fragmentation of biological barriers with subsequent
microbial and/or lipopolysaccharide (LPS) translocation from
the GI tract into various tissues, including the central nervous
system (CNS). We focus primarily on the interaction between
various SARS-CoV-2 antigens and host proteins expressed
by ECs, IECs and immune cells that may increase barrier
permeability, facilitating microbial translocation. If confirmed,
this paradigm may open novel treatment opportunities in
ME/CFS, including senotherapeutics as well as LPS and
efferocytosis-targeting agents.

THE OVERALL PRESENTATION OF
BIOLOGICAL MODEL OF ACTION

According to this paradigm, the ME/CFS pathology is initiated
by cellular senescence and barrier disruption promoted by
the SARS-CoV-2-upregulated ANG II or by direct viral
interaction with host proteins (Figure 1). When intestinal repair
is delayed (due to specific host factors), the prolonged microbial
translocation results in aberrant immune responses characteristic
of both ME/CFS and COVID-19 critical illness (Loebel et al.,
2016; Morris et al., 2019; Wang E. Y. et al., 2020; Wang L. et al.,
2020).

The model presented here is supported by the SARS-CoV-
2 interactome and the cross talk between microbial LPS and
viral S protein that disrupt biological barriers (Gaab et al.,
2005; Maes and Leunis, 2008; Giloteaux et al., 2016; Petruk
et al., 2020). Indeed, recent studies in both humans and rodents
linked LPS to the unexplained fatigue, myopathy, muscle wasting
and memory impairment, likely implicating the endotoxin in
the pathogenesis of ME/CFS (Langhans et al., 2014; Friedrich
et al., 2015; Zhang et al., 2016; Batista et al., 2019; Lasselin
et al., 2020). With the same token, LPS was recently connected
to neurodegenerative disorders, indicating that this pathology
may be initiated by the translocation of microbes and/or their
molecules into the CNS (Pretorius et al., 2018; Zhan et al.,
2018).

These aspects are presented below in more detail and
in relation to the SARS-COV-2 virus, starting with the
interactome and cellular senescence (both for ANG II-dependent
and ANG II-independent molecular changes); ANG II and
defective efferocytosis; and building the case toward the
connection with gut biology. Lastly, the reviewed evidence is
synthesized for potential therapeutic interventions, including
senotherapeutic strategies.
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FIGURE 1 | SARS-CoV-2/host protein-protein interactions. Viral crosstalk with several host proteins disrupts both endothelial cells (ECs) and intestinal epithelial cells

(IECs), damaging the gut barrier and facilitating microbial and/or lipopolysaccharide (LPS) translocation into host tissues, including the skeletal muscle and the brain.

Endothelial senescence also contributes to the disruption of blood-brain barrier (BBB), allowing microbial and/LPS access into the CNS. It is noteworthy that the cross

talk between viral E antigen and host bromodomains (BRDs) 2 and 4 triggers macrophage senescence, impairing the elimination (efferocytosis) of aging cells. Viral S

antigen attachment to ACE-2 receptor (ACE-2R) is followed by ANG II upregulation. This augments TGF-β, HMGB1, ADAM17, and ICAM-1 (not shown), inflicting

endothelial and intestinal cells dysfunction with barrier disruption.

THE INTERACTOME AND CELLULAR
SENESCENCE

The SARS-CoV-2 is an enveloped, positive-sense, single-stranded
RNA virus that enters host cells via several receptors, including
ACE-2, DPP-4 and NRP-1, expressed by various human tissues,
including the gut, lung, muscle and ECs (Cantuti-Castelvetri
et al., 2020; Fadini et al., 2020). The virus contains a genome of

30 kb that encodes for 29 proteins divided into structural, non-
structural (NSP) and open-reading frame (ORF). These proteins
were demonstrated to interact with as many as 332 human
molecules, altering numerous pathways (Gordon et al., 2020).

The attachment of SARS-CoV-2 virus to ACE-2 receptors
engenders ANG II dependent and independent molecular
changes as reviewed below. The former include activation
of ADAM17 (a disintegrin and metalloproteinase 17), ACE-2
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downregulation and upregulation of transforming growth factor
beta (TGF-β), high mobility group box 1 protein (HMBG1),
toll-like receptor 4 (TLR4) and intercellular adhesion molecule
1 (ICAM-1). ANG II independent changes are comprised of
direct interactions between viral antigens and host proteins
that alter endothelia, skeletal muscle repair and immunological
tolerance, especially the regulatory T cells (Tregs) and phagocytes
[macrophages and natural killer cells (NKCs)] (Figure 1,
Table 1).

ANG II Dependent Molecular Changes
The SARS-CoV-2 attachment to ACE-2 receptors likely impairs
ANG II hydrolysis, contributing to its unchecked accumulation.
In addition, ADAM17 shedding of ACE-2 from the cell plasma
membrane generates inactive, soluble ACE-2 (sACE-2) incapable
of physiological functions (Patel et al., 2014). This engenders
a vicious circle as excess ANG II activates ADAM17 that in
turn upregulates ANG II by inhibiting its degradation. This may
contribute to COVID-19 critical illness as overactive ADAM17
can lower the ACE-2 function by generating inactive sACE-2.
Indeed, ACE-2 downregulation was associated with unfavorable
COVID-19 prognosis, suggesting that sACE-2 along with the
attached SARS-CoV-2 virus likely disseminates the infection
throughout the body (Sfera et al., 2020; Verdecchia et al., 2020).

Dysfunctional renin-angiotensin system (RAS) was previously
associated with accelerated aging as excess ANG II induces
telomere attrition as demonstrated in both severe COVID-
19 illness and children with Hutchinson-Gilford progeria, a
syndrome of accelerated aging (Regenass et al., 1994; Herbert
et al., 2008; Gerhard-Herman et al., 2012; Amraei and
Rahimi, 2020; Benetos et al., 2020; Bidault et al., 2020; Libby
and Lüscher, 2020). Moreover, ANG II-shortened telomeres
and cellular senescence were documented in ME/CFS and
cardiovascular disease, linking dysfunctional RAS to premature
aging (Lieberman and Bell, 1993; Minamino and Komuro, 2002;
Vasan et al., 2008; Fyhrquist et al., 2013; Squassina et al.,
2019). Conversely, the telomere-repairing enzyme, telomerase,
was reported not only to reverse ANG II-induced telomeres
damage but also to ameliorate the symptoms of ME/CFS,
further connecting this disorder to premature cellular senescence
(Imanishi et al., 2005; Findeisen et al., 2011; Ho et al., 2012; Ait-
Aissa et al., 2018). In addition, losartan, an ANG II receptor
blocker (ARB), was demonstrated to restore the integrity of
intestinal barrier as well as improve many symptoms of ME/CFS,
further supporting the link between dysfunctional RAS and
aging (Feng et al., 2011; Kumar et al., 2015; Nozu et al., 2020).
Moreover, endothelial senescence and Alzheimer’s disease (AD)
were associated with ANG II-activated ADAM17, connecting
both proteins to microvascular aging and disrupted biological
barriers (Shatanawi et al., 2011; Morancho et al., 2015; Qian
et al., 2016; Dou et al., 2017; Li et al., 2019; Shalaby et al.,
2020). Indeed, impaired intestinal barrier with subsequent
endotoxemia were demonstrated in both AD and Parkinson’s
diseases (PD) patients, suggesting that LPS could reach the CNS
and initiate neurodegeneration (Hoban et al., 2013; Sun et al.,
2016; Zhao et al., 2017; Shigemoto-Mogami et al., 2018). Along
these lines, earlier studies demonstrated that LPS could access

other organs, including the lung (via ANGII/ADAM17-increased
vascular permeability) and trigger gram-negative pneumonias,
connecting dysfunctional gut barrier to organ-specific pathology
(Dreymueller et al., 2012; Morancho et al., 2015).

Aside from activating ADAM17, ANG II also upregulates
intracellular TGF-β, HMBG1, TLR4, and ICAM-1, promoting
inflammation, fibrosis and oxidative stress that in turn, disrupt
the biological barriers and immunity (Ribadeneira et al., 1996;
Kunieda et al., 2006; Crowley and Rudemiller, 2017; Cooper
et al., 2018; Figure 2). ANG II also inhibits the muscle tissue
repair, generating myopathy and atrophy as well as endothelial
and immune damage, further implicating dysfunctional RAS in
ME/CFS symptoms (Ferrario et al., 2005; Turowski et al., 2005;
Cabello-Verrugio et al., 2012; Morris et al., 2014; Wyller et al.,
2016; Cooper et al., 2018; Tirone et al., 2018; Monteil et al., 2020;
Figure 1). Indeed, defective endothelia were directly correlated
with the severity of ME/CFS symptoms, emphasizing the role
of defective vascular barrier in the pathogenesis of this disease
(Yamazaki et al., 2016; Obrenovich, 2018; Scherbakov et al.,
2020).

Senescent cells permanently exit the cell cycle but remain
metabolically active, releasing pro-inflammatory cytokines
that comprise a specific secretome, the senescence-associated
secretory phenotype (SASP). ANG II upregulates SASP,
while ADAM17 sheds these molecules from the cell plasma
membranes, facilitating their dissemination throughout the body
(Effenberger et al., 2014; Rajeevan et al., 2018; Aviv, 2020; Simões
et al., 2020; Song et al., 2020; Takeshita et al., 2020).

Preclinical studies have reported that aside from disrupting
ECs and the vascular barrier, ANG II can trigger IECs apoptosis,
increasing also the permeability of the epithelial barrier, a
condition often referred to as dysbiosis or “leaky gut” (Koga et al.,
2008; Shi et al., 2016; Tanaka and Itoh, 2019; Figure 2). Indeed,
a bidirectional relationship was found between RAS dysfunction
and intestinal dysbiosis, suggesting that ARBsmay be therapeutic
by optimizing the barrier integrity (Lu et al., 2018; Viana et al.,
2020).

ANG II Independent Changes
The SARS-CoV-2/host interactome has revealed senescence-
inducing mechanisms that can be activated by the direct cross
talk between various viral antigens and host proteins. For
example, mitochondrial damage can be inflicted indirectly by
ANG II or by the direct cross talk of SARS-CoV-2 antigens
ORF9C, NSP4, and NSP8 with mitochondrial proteins (Gordon
et al., 2020; Table 1, Figure 1). In addition, aside from ANG II,
telomere attrition can be triggered by the SARS-CoV-2 protein
NSP5 interaction with human histone deacetylases 2 (HDAC2)
or glutathione peroxidase (GPX) (Takakura et al., 2001; Månsson
et al., 2019; Table 1, Figure 1).

Moreover, the dialog of SARS-CoV-2 antigen NSP6 or ORF9C
with the human mammalian target of rapamycin complex 1
(mTORC-1) disrupts both IECs and myocytes, suggesting a
role in the pathogenesis of ME/CFS (Yoon, 2017; Kaur and
Moreau, 2019; Gordon et al., 2020). Likewise, the cross talk
between viral protein ORF8 and host interleukin 17 (IL-17) was
shown to alter the claudin molecule, disrupting intestinal barrier
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TABLE 1 | Angiotensin II independent changes: viral antigens interact directly with host proteins, altering several senescence pathways, including the metabolism

(mitochondrial damage), telomeres and angiogenesis that disrupt biological barriers and immunity, likely contributing to ME/CFS.

Interactome Mitochondrial

damage

Telomere

attrition

Impaired

angiogenesis

Senescence Gut/Muscle

pathology

Claudins/gut

barrier

Myocytes/IECs

Viral protein ORF9C

NSP4

NSP8

NSP5 E S N ORF8 NSP6

ORF9C

Host protein Mitochondrial

proteins

HDAC2

GPX

BRD-2

BRD-4

NRP-1

DDP-4

STAT-1

STAT-2

IL-17 mTORC-1

FIGURE 2 | ANG II accumulation in ECs alters several senescence-associated pathways, including ADAM17-downregulation of ACE-2 in ECs and IECs. ANG

II-upregulated pathways include TGF-β, HMGB1, TLR4, ICAM-1, and SASP (not shown). Together these molecules induce cellular senescence, increasing intestinal

and BBB permeability likely contributing to ME/CFS.

(Lee J. S. et al., 2015; Matsumoto et al., 2017; Veldhoen, 2017;
Gordon et al., 2020). Indeed, SARS-CoV-2 manipulation of IL-
17 may contribute directly to the pathogenesis of ME/CFS as
this cytokine is crucial for muscle contractility and its depletion
characterizes Duchenne muscular dystrophy (De Pasquale et al.,
2012; Wang et al., 2019). Furthermore, the interaction between
the N antigen of SARS-CoV-2 and host signal transducer and
activator of transcription (STAT) 1 and 2, can disrupt both the
function of skeletal muscle and anti-viral defenses, indicating

that the virus exploits several pathways associated with weakness,
fatigue and the susceptibility to infections (Moresi et al., 2019;
Mu et al., 2020; Table 1).

ANG II AND DEFECTIVE EFFEROCYTOSIS

Novel studies have shown that aside from inducing cellular
senescence, COVID-19 disrupts the clearance or efferocytosis of
aging or dying cells, leading to their unchecked accumulation.
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Excessive buildup of senescent cells has been associated with
exhaustion, fatigue, sarcopenia, frailty, immune dysfunction and
cognitive impairment, symptoms that also characterize ME/CFS
(Jeyapalan and Sedivy, 2008; LeBrasseur et al., 2015; Lee, 2019;
Nelke et al., 2019; Martínez-Cué and Rueda, 2020). For example,
chemotherapy-receiving breast cancer patients with elevated
levels of p16INK4a senescent marker were found to experience
most fatigue (Sanoff et al., 2014; Rajeevan et al., 2018). On
the other hand, enhanced clearance of senescent cells was
associated with improved physical activity and reduced fatigue
in animal models (Demaria et al., 2017). For this reason, various
senotherapeutic strategies targeting frailty and exhaustion in
individuals on cancer therapy are currently in clinical trials,
suggesting that these agents may also benefit ME/CFS patients
(Lewis-McDougall et al., 2019; Short et al., 2019).

Under normal circumstances, billions of cells in the human
body undergo apoptosis each day and are promptly removed
by professional and non-professional phagocytes, including
macrophages, NKCs and ECs (facultative phagocytes) (Vann
and Proctor, 1990; Kirsch et al., 2007; Qingxian et al., 2010;
Seeberg et al., 2019; Zhou et al., 2019). Macrophages, the primary
efferocytosis executors, also participate in endothelial repair,
linking the elimination of senescent cells to the pathology of
biological barriers (Kearns et al., 2012; Zhu et al., 2016). On
the other hand, ANG II signaling via angiotensin II type 1
receptors (AT-1Rs) disrupts both efferocytosis and ECs function
as this peptide shifts macrophages from the phagocytic (M2)
to proinflammatory (M1) phenotype, a pattern consistent with
autoimmune inflammation (Belline et al., 2004; Yamamoto et al.,
2011). ANG II disrupts the phagocytic function of macrophages
and efferocytosis in addition to inducing ECs senescence and
barrier dysfunction, defects encountered in both ME/CFS and
COVID-19 critical illness (Zhang et al., 2019; Schulte-Schrepping
et al., 2020). Conversely, the macrophage-activating factor was
shown to restore normal efferocytosis as well as ameliorate many
ME/CFS symptoms, suggesting a therapeutic potential (Inui
et al., 2015). Moreover, both hyperinflammation and endotoxin
tolerance, were demonstrated in ME/CFS and severe COVID-
19, linking aberrant immune responses to the accumulation
of senescent cell (Monneret and Venet, 2012; Fenwick et al.,
2019; Zheng et al., 2020). Indeed, dysfunctional macrophages
can generate a sepsis-like immune pattern marked by an initial
hyperinflammation followed by immunosuppression, endotoxin
tolerance and exhausted lymphocytes (Pena et al., 2011; Elder
and Emmerson, 2020). As aberrant immune responses were
associated with both ME/CFS and COVID-19 critical illness,
dysfunctional efferocytosis is a likely contributor to both
disorders (Manestar-Blazić and Volf, 2009; Morris and Maes,
2013; Fukushima et al., 2018; Rajeevan et al., 2018; Silva et al.,
2019; Zhou T. et al., 2020; Kruglikov and Scherer, 2021).

Efferocytosis: The Molecular Mechanisms
Efferocytosis is initiated by phagocytes responding to the “eat
me” signals expressed on the plasma membrane of senescent
or dying cells, marking them as “ready” for clearance (Barth
et al., 2017; Karaji and Sattentau, 2017; Kale et al., 2020).
Defective elimination of senescent ECs and IECs may increase

the permeability of intestinal barrier, promoting dysbiosis and
microbial translocation.

In general, efferocytosis occurs without immunogenicity as
phagocytes engulf target cells without “spillage” of intracellular
material into the extracellular milieu. When cytosolic content
“escapes” cell confinement, it acts as a damage-associated
molecular pattern (DAMP) that activates immunity, engendering
inflammation (Abdolmaleki et al., 2018; Kawano and Nagata,
2018). For example, extracellular HMGB1 (a molecule
upregulated by ANG II) is a potent DAMP associated with
COVID-19 cytokine storm and several autoimmune disorders
(Friggeri et al., 2010; Banerjee et al., 2011; Harris et al., 2012;
Magna and Pisetsky, 2014; Tsung et al., 2014; Chen R. et al.,
2020; Mangalmurti and Hunter, 2020; Figure 1). Interestingly,
excessive HMBG1 was linked to unexplained fatigue, chronic
pain, exhaustion, and muscle dysfunction, suggesting a role in
the pathogenesis of ME/CFS (Morris and Maes, 2013; Zong et al.,
2013; Wan et al., 2016; Nguyen et al., 2017; Figure 2).

Efferocytosis molecular sensors, including MerTK, recognize
the externalized phosphatidylserine (PS), a major “eat me”
signal, expressed by senescent or dying cell, earmarking them
for clearance. MerTK is shed and inactivated by ADAM17,
disrupting efferocytosis and triggering senescent cells-mediated
pathology (Thorp et al., 2011; Dransfield et al., 2015; de
Couto et al., 2019; Palau et al., 2020; Sfera et al., 2020;
Figure 2). Indeed, overactive ADAM17 with excessive shedding
of MerTK and ACE-2 could comprise a significant pathogenetic
mechanism of COVID-19 and ME/CFS (Casciola-Rosen et al.,
2020; Chaudhary, 2020; Megremis et al., 2020; Miesbach, 2020;
Pagliaro and Penna, 2020). Along these lines, studies in athletes
found a direct correlation between ACE-2 downregulation
and poor muscle performance, further linking ADAM17 to
the pathogenesis of ME/CFS (Motta-Santos et al., 2016).
Interestingly, PS externalization was shown to promote ADAM17
activation and ACE-2 shedding, suggesting that the SARS-CoV-2
virus likely exploits this mechanism (Sommer et al., 2016).

The SARS-CoV-2 Virus and Apoptotic
Mimicry
It has been established that some viruses exploit PS signaling
to directly invade the host phagocytes, a process known as
apoptotic mimicry (Mercer and Helenius, 2010; Morizono and
Chen, 2014; Segawa and Nagata, 2015). Emerging evidence
indicates that the SARS-CoV-2 virus may disrupt efferocytosis
by accessing host phagocytic cells by this route. Indeed, anti-
PS antibodies, PS-containing extracellular vesicles (EVs) and
platelets with externalized PS were demonstrated in COVID-
19 critical illness (Urciuoli and Peruzzi, 2020; Zaid et al.,
2020; Zhou Y. et al., 2020; Lind, 2021). Moreover, since ECs
(non-professional phagocytes) express PS receptors, the SARS-
CoV-2 virus may usurp these proteins to directly invade host
endothelia (Setty and Betal, 2008). In addition, neutrophils with
externalized PS were reported in ME/CFS patients, suggesting
that viruses capable of apoptotic mimicry may contribute to
this disorder (Kennedy et al., 2004). Furthermore, dysfunctional
NKCs (professional phagocytes) were demonstrated in ME/CFS
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patients, further connecting this illness to apoptotic mimicry-
impaired efferocytosis (Maher et al., 2005; Eaton-Fitch et al.,
2019).

The SARS-CoV-2/host interactome found that the crosstalk
between viral protein E (envelope) and human BRD-2 and BRD-
4 triggers macrophage senescence and efferocytosis disruption
(Gordon et al., 2020; Wang H. et al., 2020; Table 1). Interestingly,
the SARS-CoV-2 spike (S) protein interacts with microbial LPS,
inducing macrophage senescence, indicating that the virus may
utilize several parallel mechanisms for disabling the efferocytosis
(Petruk et al., 2020). Since BDR-4 is an established driver
of angiogenesis and microvascular repair, viral exploitation
of this protein likely alters the biological barriers, enabling
microbial translocation and the ME/CFS pathogenesis (Maes
and Leunis, 2008; Maes et al., 2014; Zhou Z. et al., 2020).
Furthermore, BRD-4 depletion was associated with generalized
muscle weakness, suggesting that post-exertional malaise, a well-
established ME/CFS marker, may be engendered through this
mechanism (Segatto et al., 2017).

Taken together, this data shows that the SARS-CoV-2
virus likely utilizes apoptotic mimicry to disrupt efferocytosis,
leading to the accumulation of senescent cells that in turn
triggers hyperinflammation which exhausts the immune
system, facilitating viral infection. Impaired efferocytosis
in the intestinal barrier and failure to eliminate senescent
ECs and IECs may increase the gut permeability, allowing
microbial/LPS translocation.

CELLULAR SENESCENCE AND THE GUT

Intestinal barrier separates the gut lumen from the rest of the
body, preventing migration of microbes or molecules outside
the GI tract, while at the same time, ensuring adequate nutrient
absorption. A single layer of IECs covered by abundant mucus
comprise the epithelial portion of the gut barrier, while ECs
constitute the vascular component (Thomas, 2016). Aside from
the barrier function, IECs mediate the interaction between
gut microorganisms and resident immune cells, balancing the
immunological acceptance of intestinal microbes with pathogen
rejection (Mizrahi and Ilan, 2009; Edelblum et al., 2017; Poggi
et al., 2019). At the molecular level, IECs are kept together
by junction molecules, including the claudins, that control
barrier permeability by regulating the size of intercellular spaces
(Garcia-Hernandez et al., 2017; Garcia et al., 2018; Figure 2).
Interestingly, preclinical studies have reported that ANG II,
acting via AT-1R, increases the permeability of intestinal barrier
by altering the expression of claudin-7 (Shi et al., 2016; Takashina
et al., 2020). In addition, IL-17, a cytokine directly usurped by the
SARS-CoV-2 viral protein ORF8, influences the gut permeability
via claudins (Lee J. S. et al., 2015; Andrews et al., 2018; Table 1).
Moreover, the SARS-CoV-2 antigens NSP4, NSP8, and ORF9C
interact with IECs mitochondria increasing the permeability
of intestinal barrier by an alternative mechanism (Lee J. H.
et al., 2015; JanssenDuijghuijsen et al., 2017; Figure 1, Table 1).
Moreover, ICAM-1, an ANG II-controlled protein, is essential
for maintaining intestinal and endothelial integrity, suggesting

that the SARS-CoV-2 virus can also alter the gut barrier by
manipulating RAS (Sumagin et al., 2014; Sarelius and Glading,
2015; Figure 2).

The Permeability-Immunity Axis
In the GI tract, intestinal permeability is tightly intertwined
with local immunity as IECs, ECs and gut resident immune
cells regulate the barrier function, nutrient absorption and gut
microbial composition. For example, intestinal ACE-2 receptors
also function as neutral amino acid transporters (B0AT1 or
SLC6A19), therefore a dysfunctional RAS can trigger barrier
disruption, dysbiosis and amino acid malabsorption (Cheng
et al., 2017; Jando et al., 2017; Viana et al., 2020). For this
reason, it is not surprising that COVID-19 and ME/CFS have
been associated with both aberrant immune responses and
dysfunctional intestinal permeability (Gaab et al., 2005; Maes and
Leunis, 2008; Maes et al., 2014; Morris et al., 2019). Conversely,
normalization of gut barrier was found to ameliorate immunity
in COVID-19 and the symptoms of ME/CFS patients (Maes
and Leunis, 2008; Maes et al., 2014; Du Preez et al., 2018;
Mandarano et al., 2018; Cardinale et al., 2020). Along these lines,
the permeability-immunity connection may explain the higher
prevalence of inflammatory bowel disease (IBD) in ME/CFS
patients as both conditions are marked by dysfunctional gut
barrier and immune responses (Newton et al., 2012; Gravina
et al., 2018; Mandarano et al., 2018; Tsai et al., 2019; Scherbakov
et al., 2020). With the same token, active IBD was associated with
unfavorable COVID-19 outcomes, suggesting that the SARS-
CoV-2 attachment to ACE-2 (abundantly expressed on IECs and
resident Tregs) disrupts both the intestinal barrier and the local
immunity (Bezzio et al., 2020; Lin et al., 2020). In addition,
the premature senescence of intestinal endothelia and increased
microbial translocation may contribute to body-wide immune
changes demonstrated in ME/CFS and COVID-19 critical illness
(Poujol et al., 2015; Huth et al., 2016; Kasper et al., 2016;
Mandarano et al., 2018; Galván-Peña et al., 2020; Li et al., 2020;
van Eeden et al., 2020; Zheng et al., 2020).

In the GI tract, commensals are immunologically protected
by the resident Tregs that mediate luminal immunosuppression.
However, outside the gut, microbes are vigorously attacked by
the host immune system that often generates hyperinflammatory
responses that may exhaust the lymphocytes, generating
endotoxin tolerance (Ramos et al., 2016; Sotzny et al., 2018;
Sepúlveda et al., 2019; Fine et al., 2020).

At the molecular level, Tregs-induced immunosuppression
is engendered by the NRP-1/IL-10 signaling that requires the
presence of vascular endothelial growth factor (VEGF) (Ohm
et al., 2003; Wang et al., 2015; Chuckran et al., 2020). The
SARS-CoV-2 attachment to NRP-1 lowers VEGF, leading to
excessive immune tolerance that helps the virus avert detection
(Yin et al., 2020; Mayi et al., 2021). In addition, as VEGF also
regulates angiogenesis, endothelial senescence and efferocytosis,
the disruption of NRP-1/IL-10/VEGF axis likely triggers the
ME/CFS and COVID-19 pathogenesis (Watanabe et al., 1997;
Hasan et al., 2011; Kearns et al., 2012). Moreover, SARS-
CoV-2/NRP-1 attachment and dysfunctional VEGF in IECs,
myocytes, ECs and Tregs was associated with disabling fatigue,
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further connecting these proteins to ME/CFS (Yadav et al.,
2012; Wang et al., 2015; Yamaji et al., 2015; Issitt et al., 2019;
Cantuti-Castelvetri et al., 2020; Davies et al., 2020; Moutal
et al., 2021; Table 1). Interestingly, earlier studies have reported
VEGF downregulation in ME/CFS patients, linking this growth
factor to disabling fatigue (Landi et al., 2016; Dai et al., 2017;
Petruk et al., 2020). Moreover, as the S antigen of SARS-CoV-
2 virus binds microbial LPS, and LPS-activated Tregs inhibit
immune responses, the ME/CFS-associated endotoxin tolerance
may be triggered via this mechanism (Lewkowicz et al., 2006;
Morris et al., 2019; Table 2). Furthermore, the SARS-CoV-2
virus can also generate endotoxin tolerance in other manner,
including ANG II-upregulation of intracellular HMGB1 and
TGF-β, NSP6/ORF9C interaction with host mTORC-1, and
antigen E cross talk with BRD-2 and BRD-4 (Aneja et al., 2008;
Yang et al., 2015; Sun et al., 2018; Copsel et al., 2019; Figure 1,
Table 2).

Autoantibodies in ME/CFS
Another manifestation of the ME/CFS-associated immune
dysregulation is the presence of autoantibodies directed
against cholinergic and β2 adrenergic receptors (β2AdRs)
documented by numerous studies (Loebel et al., 2016; Wirth and
Scheibenbogen, 2020). Autoantibodies are believed to reflect the
presence of altered “self ” proteins that are unrecognized and
therefore attacked by the immune system.

An alternative explanation could fathom autoantibodies in
ME/CFS patients as being directed at microbial molecules
translocated from the host GI tract. Indeed, many gut microbes
express muscarinic and adrenergic receptors, suggesting that
autoantibodies may target these molecules (Furukawa and Haga,
2000; Karavolos et al., 2013; Moreira et al., 2016). Along
these lines, translocated microorganisms that express β2AdRs,
may elicit antibodies cross-reacting with host’s own adrenergic
receptors. For example, antibodies against β1 and β2AdRs of
translocated Escherichia coli may cross react with their human
receptors (Freissmuth et al., 1991). Interestingly, recent studies
have demonstrated that many ME/CFS patients present with
significantly higher norepinephrine plasma levels, indicating that
anti-β2AdR antibodies may aim at downregulating adrenergic
transmission and restore homeostasis (Wyller et al., 2016).

Under normal circumstances, the anti-β2AdR antibodies
activate β2AdR receptors, however (probably due to elevated
norepinephrine) this response is attenuated in ME/CFS
patients, suggesting once more the compensatory role of
autoantibodies (Hartwig et al., 2020). Other pathogens, including
the reovirus type 3, demonstrated molecular mimicry with
human β2AdR, promoting adaptive autoantibodies that
eliminate the virus-infected cells by targeting these receptors
(Co et al., 1985). Moreover, a recent study demonstrated
that the microbial metabolite phenylacetylglutamine (PAGIn)
excessively upregulates human cardiac adrenergic signaling,
promoting heart disease, a condition that autoantibodies could
preempt (Nemet et al., 2020). With the same token, viruses
that populate the human GI tract were shown to modify
various host molecules, transforming them into immune targets
(Campbell, 2014; Mukhopadhya et al., 2019). For example, the

hemagglutinin antigen (HA) of H1N1 influenza virus can alter
host hypocretin molecule, turning it into an antigen significant
for the pathogenesis of autoimmune narcolepsy (Luo et al.,
2018). On the other hand, increased tryptophan absorption
due to dysfunctional intestinal barrier and overactivation
of brain kynurenine pathway (KP) was demonstrated in
ME/CFS patients, further linking the dysfunctional GI tract
to this disease (Georgiades et al., 2003; Yamashita, 2020).
Interestingly, ARBs were demonstrated to inhibit KP, probably
by normalizing intestinal permeability, limiting tryptophan
absorption (Blankfield, 2011; Zakrocka et al., 2017).

POTENTIAL INTERVENTIONS FOR
BARRIER DYSFUNCTION

This section focuses on three types of interventions in line with
the hypothesis presented here: restoration of adequate intestinal
permeability, LPS lowering or removal and efferocytosis
optimization. Most agents operate by more than one mechanism
of action, indicating that superior efficacy may be achieved by
combining therapeutic modalities. Indeed, some ME/CFS drugs
currently in use directly or indirectly restore the function of
biological barriers, ameliorate efferocytosis and lower LPS. For
example, rituximab, a monoclonal antibody often utilized in
ME/CFS, improves the phagocytic function of macrophages and
efferocytosis, in addition to its established actions on antibodies
and B lymphocytes (Toubi et al., 2007; Djaldetti et al., 2019).
Another example is escitalopram, a frequently prescribed drug
to ME/CFS patients with depressed mood, that aside from its
antidepressant action, also promotes endothelial restoration,
optimizing the permeability of biological barriers (Lopez-Vilchez
et al., 2016). Other ME/CFS therapies, including the combination
of coenzymeQ10 and nicotinamide adenine dinucleotide (NAD),
improve endothelial function, demonstrating an alternative
mechanism of action (Gao et al., 2012; Castro-Marrero et al.,
2016; Mateuszuk et al., 2020). Conversely, drugs that restore
endothelial integrity, including beta blockers, are often beneficial
to ME/CFS patients, emphasizing the role of dysfunctional
biological barriers in the pathogenesis of this illness (Su, 2015;
Wyller et al., 2016). Mildronate, an anti-ischemic drug, often
helpful to ME/CFS patients, also restores endothelial integrity
by upregulating nitric oxide (Sjakste et al., 2005; Comhaire and
Deslypere, 2020). Yet other endothelium-protecting drugs, such
as ARBs, may offer relief to ME/CFS patients as they improve
muscle strength, exercise capacity, and cognition (Nade et al.,
2015; Coelho et al., 2016). In addition, ARBs optimize intestinal
permeability and macrophage-mediated efferocytosis, indicating
more than one action mechanism (Villapol and Saavedra, 2015;
Shi et al., 2016). Moreover, a cross-reaction was demonstrated
between AT-1Rs and β2AdRs, as they are inhibited by a single
antagonist, suggesting that ARBs and β-blockers may be equally
effective in ME/CFS (Blumenfeld et al., 1999; Barki-Harrington
et al., 2003).

Considering the hypothesis presented here, several drugs
not currently utilized in ME/CFS may emerge as potential
therapies. These include short chain fatty acids (SCFAs), milk
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TABLE 2 | The SARS-CoV-2 immunological tolerance-inducing mechanisms.

Mechanism Endotoxin tolerance

ANG II HMGB-1

TGF- β

NSP6

ORF9C

mTORC-1

E BRD-2

BRD-4

LPS

VEGF

Tregs activation

It is noteworthy that Tregs activation lowers immune responses, likely generating

endotoxin tolerance.

fat globule membranes (MFGM), β-glucan, VEGF-agonists,
fecal microbial transplantation and senolytic agents, including
Navitoclax and fistein.

Microbial products, such as SCFAs are derived from the
fermentation of dietary fiber in the GI tract. They may be
beneficial to ME/CFS patients as they promote intestinal barrier
restoration, correct dysbiosis and local immunity (Chen et al.,
2017; Newberry et al., 2018; Yang et al., 2020).

Fecal microbial transplantation (FMT), has been suggested
as a treatment modality for ME/CFS after being promoted
by a few uncontrolled studies, that found long lasting
improvement (Castro-Marrero et al., 2016). However, at present,
the application protocols, optimal donors and the long-term risks
of FMT are not entirely clear (Evrensel and Ceylan, 2016).

Milk fat globule membranes (MFGM) and β-glucan were
found to decrease both microbial translocation and fatigue in
murine models (Vetvicka and Vetvickova, 2015; Vetvicka et al.,
2019; Yu et al., 2020). Indeed, aside from restoring the intestinal
barrier, β-glucan also reverses endotoxin tolerance, correcting the
aberrant immune responses that characterize ME/CFS (Wu et al.,
2018).

Upon crossing from the GI tract into the systemic circulation,
LPS may access the brain via disrupted BBB or areas of high
physiological permeability, such as the circumventricular organs.
Inside the brain, endotoxin binds to microglial TLR4, activating
these cells, probably contributing to cognitive impairment, or
“brain fog” experienced by many ME/CFS patients (Qin et al.,
2007; Theoharides et al., 2015; Tsukamoto et al., 2018). β-
glucan inhibits TLR4 endocytosis, preventing LPS activation of
microglia and the subsequent cognitive impairment (Novakovic
et al., 2016). Interestingly, LPS-binding protein (LBP), an acute
phase reactant, can remove LPS by attaching to it tightly,
neutralizing its actions, suggesting a therapeutic potential in
ME/CFS (Mathison et al., 1992; Goldblum et al., 1994; Giloteaux
et al., 2016). Moreover, β-glucan was demonstrated to augment
macrophage-mediated efferocytosis in animal model, indicating
that by decreasing the accumulation of senescent cells it could
help the ME/CFS patients (Fatima et al., 2017). Others have
suggested that metformin protects the gut barrier by lowering
LPS-inflicted damage, indicating a mechanism of action in line
with the hypothesis presented here (Brown et al., 2018; Wu et al.,
2018). Aside from safeguarding the GI tract, metformin also

augments microglia-mediated efferocytosis, protecting the CNS
against senescent cell pileup (Tabuzek et al., 2010).

A recent open-label, pilot study in human subjects
utilized senotherapeutics in patients with pulmonary fibrosis,
demonstrating good tolerability and indicating potential
therapeutic benefits in ME/CFS (Justice et al., 2019). Indeed,
several senolytic drugs were recently tested, including dasatinib
(FDA-approved for chronic myeloid leukemia), hyperoside,
quercetin, fistein and the BCL-2 inhibitor, Navitoclax (Kirkland
et al., 2017; Mohamad Anuar et al., 2020). As ECs are dependent
on BCL-2, Navitoclax should be tested for ME/CFS (Zhu et al.,
2016; Wissler Gerdes et al., 2020). Fistein, currently in phase 2
clinical trials for the frail elderly syndrome, has demonstrated
good tolerability, indicating potential beneficial effects in
ME/CFS (AFFIRM-LITE trial NCT03675724).

CONCLUSIONS

The data presented above supports the hypothesis that ME/CFS
pathology likely commences with a pathogen-induced intestinal
barrier disruption and subsequent microbial translocation. These
in turn trigger aberrant immune responses in various host tissues,
ranging from autoimmune inflammation (cytokine storm) to
excessive tolerance, likely engendering the COVID-19 and
ME/CFS pathologies.

Restoration of adequate intestinal permeability, LPS lowering
and efferocytosis optimization are the suggested interventions in
line with the hypothesis presented here.

LIMITATIONS

This is not a systematic review hence additional publications
might be identified as relevant to the subject. Secondly, while this
hypothesis has a clear biological foundation, it would still require
to be validated at a minimum through retrospective analysis
of clinical data where possible. Thirdly, as the SARS-CoV-2
interactome has demonstrated, systemic infections present a
complicated landscape or pathways that may act synergistically
or in parallel. As such this hypothesis can be viewed as a starting
point toward an increased understanding of the relationship
between viral infections, chronic inflammation (including that of
the gut) and ME/CFS.

FUTURE PERSPECTIVES

ME/CFS is a serious illness with unclear etiology and non-specific
treatments. In addition, as it is often dismissed by both the
public and healthcare workers, patients with this condition are
frequently stigmatized and may avoid seeking help. Decreasing
stigmatization by educating the public and clinicians on the
biological aspects of this condition is therefore very important.
In this regard, the molecular hypothesis presented here may
contribute to this goal.

Future research will likely probe deeper into the interface
between gut microbes and the local immune system, elucidating
not only the pathogenesis of ME/CFS, but also of other
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illnesses associated with dysfunctional immune tolerance
or activation, including autoimmune, neuropsychiatric and
degenerative disorders.

Studying the virus/host interactome and associated pathology
will contribute to a better understanding of the largest
immune compartment in the body, the GI tract, and its
role in the immunological acceptance of gut microbes. This
will likely contribute to the development of antigen-specific
immunosuppressant therapies, such human Tregs. Indeed,
allogeneic T cells are currently in clinical trials for COVID-
19 hyperinflammatory syndrome (NCT04482699). Unlike
non-specific immunosuppressive agents that impact many
tissues and organs, generating adverse effects, Tregs offers
specificity and precision that could benefit not only the patents
with ME/CFS, but also those with allergies, transplants and
infectious diseases.

Furthermore, elucidation of the molecular underpinnings of
microbial translocation will undoubtedly lead to more specific

treatments for restoring the adequate permeability of the GI tract,
that would benefit patients with inflammatory bowel disease
(IBS). As gut microbes alter both the intestinal and blood-
brain barrier, manipulation of microorganismal translocation
will likely contribute to the development of treatments for some
CNS diseases, including the neurodegenerative disorders, such as
Alzheimer’s and Parkinson’s disease (Osorio et al., 2019).
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