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Abstracts
The coronavirus disease 2019 (COVID-19) affects infected patients even after the acute phase and impairs their health and
quality of life by causing a wide variety of symptoms, referred to as long COVID. Although the evidence is still insufficient,
hypertension is suspected to be a potential risk factor for long COVID, and the occurrence of cardiovascular diseases seems to be
a key facet of multiple conditions observed in long COVID. Nonetheless, there are few reports that comprehensively review the
impacts of long COVID on hypertension and related disorders. As a sequel to our previous report in 2020 which reviewed the
association of COVID-19 and hypertension, we summarize the possible influences of long COVID on hypertension-related
organs, including the cardiovascular system, kidney, and endocrine system, as well as the pathophysiological mechanisms
associated with the disorders in this review. Given that the clinical course of COVID-19 is highly affected by age and sex, we
also review the impacts of these factors on long COVID. Lastly, we discuss areas of uncertainty and future directions, which
may lead to better understanding and improved prognosis of clinical problems associated with COVID-19.
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Introduction

Coronavirus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
is a global pandemic, resulting in more than 20 million
confirmed cases in Japan and 600 million cases in the world
(as of Sep 2022) [1]. Emerging data indicate that COVID-
19 affects patients even after an acute phase and impairs
their quality of life, refers to as “long COVID” (also called
post-COVID conditions or post-acute COVID-19 syn-
drome). Long COVID includes a wide range of ongoing
health problems that last weeks or even several years and it
has become a serious global problem.

In this COVID-19 pandemic era, hypertension has been
receiving increased attention. As we summarized in our
previous report in 2020 which reviewed the association of
COVID-19 and hypertension [2], complications of COVID-
19 can be recognized as vascular disorders [2, 3]. In addi-
tion, hypertension-related diseases, including cardiovascular
disease (CVD) and chronic kidney disease (CKD), are
among the most common risk factors for severe COVID-19
[4, 5]. Also, even the evidence of hypertension as a
potential risk factor for long COVID is still insufficient [5],
one observational study reported that pre-existing hyper-
tension was a predictor of long COVID [6]. Moreover,
recent evidence suggests that hypertension and related dis-
eases might occur as the sequelae of COVID-19 [4, 5, 7].
Multiple studies reported elevated blood pressure [8] and
excess burdens of hypertension as a post-acute sequelae of
COVID-19 [9, 10]. Given that hypertension is a systemic

disease and closely associated with multiple organs (brain,
heart, vasculature, kidney, endocrine systems, etc.), whether
and how long COVID impacts these organs is an important
issue that needs to be addressed. As a sequel to our previous
report on COVID-19 and hypertension in 2020 [2], we here
summarize recent findings on the relationship between long
COVID and hypertension-related disorders, and describe its
possible mechanisms. We also review the influences of age
and sex on long COVID, as these biological factors are
reported as potential factors that affect risk of long COVID.
Along with this review, the updated information on the
impact of COVID-19 on hypertension is discussed as a
separate manuscript [5]. In that manuscript, we discussed
the relationship between long COVID and hypertension
itself [5]. We also discussed other important issues relating
hypertension and COVID-19 (e.g. COVID-19 and the use
of the renin-angiotensin system (RAS) inhibitors, COVID-
19 vaccines in patients with hypertension, lifestyle changes
during COVID-19 pandemic and its influence on hyper-
tensive patients, and the role of telemedicine) [5].

For the definition of “long COVID”, recently World
Health Organization (WHO) defined long COVID (Post
COVID-19) as “a clinical condition that occurs in indivi-
duals with a history of probable or confirmed SARS-CoV-2
infection, usually 3 months from the onset of COVID-19
with symptoms that last for at least 2 months and cannot be
explained by an alternative diagnosis” [11]. Nonetheless,
before WHO released this definition, there was no clear
definition of this disorder and each study has defined long
COVID according to their own methods [12]. We generally
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considered studies published by June 2022, defining long
COVID as a condition that exists 3 months or longer from
the onset of COVID-19 in this review.

Long COVID and hypertension-related
organs

Long COVID and cerebral/cardiovascular disease

COVID-19-associated CVD such as acute coronary syn-
dromes (acute myocardial infarction or unstable angina),
heart failure, arrhythmias, stroke, and thromboembolism,
occurs not only in the early stages of infection but also
several months later [13]. In a UK study, 13.3% of 4182
predominantly community patients experienced at least one
persistent symptom beyond four weeks of infection, of
which half were considered cardiac in origin [14]. In an
international online survey study of 3762 patients, cardiac
symptoms including chest pain (~53%), palpitations
(~68%), and fainting (~13%) were observed in up to 86% of
patients by seven months from infection [15]. The pre-
valence of long COVID among 2550 patients using a social
media survey demonstrated that cardiopulmonary symp-
toms were reported by 89% of participants in their study
[16]. A prospective study report from Italy found that only
13% had complete recovery of symptoms, 53% had general
fatigue, 43% had dyspnea, and chest pain in 22% [17]. A
follow-up study of 1733 hospitalized patients from Wuhan,
China, showed that 63% of patients reported fatigue, 26%
breathlessness, and 5–9% experienced chest pain and pal-
pitations at six months post-infection [18]. By 12 months,
the same investigators of the study showed that symptoms
of breathlessness (30%) and chest pain (7%) were slightly
more common, while fatigue had improved (20%) [19]. In a
study from the UK, only 29% showed improvement in their
pre-symptomatic state, 56% complained of fatigue, 48% of
dyspnea, and 39% of worsening pain symptoms [20]. Thus,
the complication rate of CVD and cardiopulmonary symp-
toms associated with COVID-19 varied widely depending
on the severity of the patient, the time of infection and the
region [13].

Recently, Xie and colleagues found an increased risk and
excess burden of incident CVD among all subgroup of
patients with COVID-19 compared with the control group
[21]. This cohort study of the US Department of Veterans
Affairs (VA) national healthcare database consisted of
153,760 COVID-19 survivors and two control groups,
5,637,647 non-SARS-CoV-2 infected subjects and
5,859,411 historical cohort (before the COVID-19 pan-
demic), reported that patients with COVID-19 were at
increased risk of incident CVD at one year after infection,
even among patients who were not hospitalized during the

acute phase of the infection. These diseases included atrial
fibrillation [(hazard ratio (HR) 1.71, 95% confidence
interval (95% CI) 1.64–1.79)], ischemic heart disease (HR
1.72, 95% CI 1.56–1.90), pericarditis (HR 1.85, 95% CI
1.61–2.13), myocarditis (HR 5.38, 95% CI 3.80–7.59),
heart failure (HR 1.72, 95% CI 1.65–1.80), thromboembolic
disease (HR 2.93, 95% CI 2.73–3.15), stroke (HR 1.52,
95% CI 1.43–2.62), and transient ischemic attacks (TIA)
(HR 1.49, 95% CI 1.37–1.62) [21]. Moreover, the increased
risk of CVD was observed both in the presence and absence
of cardiovascular risk factors or pre-existing CVD [21].
Although cardiovascular risk increases in parallel with the
severity of the acute COVID-19, even individuals with mild
COVID-19 are at increased risk of CVD [22]. These studies
indicate that COVID-19 can increase the risk of developing
CVD after the acute infection, even in individuals who were
at low risk of CVD before having COVID-19.

Regarding the cardiovascular function, a case-matched
study from Germany comprehensively assessed the
intermediate-term impact of a mild to moderate course of
COVID-19 on multiple organ-specific function [23]. The
study reported that the left and right ventricular function was
slightly lowered, and the concentrations of troponin and
N-terminal pro-brain natriuretic peptide (NT-proBNP) were
significantly higher in post-COVID-19 [23]. As for the vas-
cular system, sonographically non-compressible femoral
veins, suggesting deep vein thrombosis, were substantially
more frequent after COVID-19 [23]. Also, in a prospective
cohort study over a six-month follow-up, COVID-19 patients
were shown to develop endothelial dysfunction (as assessed
by flow-mediated dilatation; FMD), which, though improved,
remained impaired compared to healthy controls subjects
[24]. Among adult patients with COVID-19 who were
admitted to the hospital and required oxygenation with
moderate disease or higher, cardiac magnetic resonance
imaging (MRI) revealed cardiac involvement in 78% and
ongoing myocardial inflammation in 60%, independent of
preexisting conditions, severity and overall course of the acute
illness, and time from the original diagnosis [25]. In patients
with symptomatic long COVID-19 (three months after an
acute phase), cardiac MRI showed (post-) inflammatory car-
diac sequelae in 28% patients, with signs of myocarditis (such
as nonischemic late gadolinium enhancement or pathologic
findings in T1 or T2 mapping) [26]. Wang et al. showed that
myocardium injury (depressed left ventricular global cir-
cumferential strain and peak right ventricular strains) existed
in 30% of COVID-19 patients at three-month follow-up [27].
Although there is a possibility that myocardial damage or
heart failure may have occurred before SARS-CoV-2 infec-
tion, myocardial damage due to myocarditis or other causes
should be considered, and cardiac MRI strain analysis can be
a sensitive tool to evaluate the recovery of left and right
ventricular dysfunction.
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Recent guidance from the European Society of Cardiol-
ogy indicated that cardiopulmonary symptoms including
chest pain, shortness of breath, fatigue, and autonomic
manifestations such as postural orthostatic tachycardia are
common and associated with significant disability and
heightened anxiety [28]. Possible pathophysiological
mechanisms for delayed cardiovascular complications are
not well understood, which will be covered later.

As for brain and neurological sequela of COVID-19,
various symptoms and disorders, such as “brain fog”,
headache, neurocognitive dysfunction, mood and sleep
disorders, and fatigue are known [29]. Also, development of
dysautonomia including blood pressure abnormality, such
as hypertension, postural hypotension, among patients with
COVID-19 was reported [30, 31] Furthermore, while
patients with COVID-19 have an increased risk of stroke,
post-stroke depression and anxiety may explain some parts
of symptoms of long COVID. The mechanisms for the
extensive damages of COVID-19 on neurological aspects
are not well known. Yet, direct viral invasion of the brain
and vascular structures, abnormal immune and inflamma-
tory reaction, neurological consequences secondary to
hypoxia and multi-organ failure, and social isolation during
the pandemic may explain some parts of neurological
sequela of COVID-19 [32, 33].

Long COVID and the kidney

Acute kidney injury (AKI) has been reported to be a fre-
quent observation in patients with COVID-19 at an acute
phase, which significantly influences the clinical outcomes.
Moreover, CKD is one of the independent factors for severe
COVID-19, highlighting the close association between
COVID-19 and kidney diseases. As for the cause of kidney
injury that accompanies COVID-19, both direct and indirect
mechanisms have been proposed. In the former, it has been
demonstrated that SARS-CoV-2 RNAs are present in renal
parenchyma and that the virus can directly enter renal
cells [34]. In the latter, multiple factors such as acute
respiratory distress syndrome (ARDS), systemic inflam-
matory response, endothelial injury, and hypercoagulation
contribute to the deterioration of renal function.

Several studies have been identified that describe the
mid-term kidney outcome (from three months up to one
year) in COVID-19 patients (Table 1) [18, 35–39]. In an
initial study by Hultstrom et al., 60 patients with COVID-19
admitted to ICU were assessed for renal function (average
follow-up time of 18 weeks) [37]. In these patients, those
who had stage 3 AKI during the ICU stay were more likely
to progress to a higher CKD stage. In another study,
Stockmann et al. retrospectively analyzed renal outcomes in
74 patients with COVID-19 who had AKI requiring kidney
replacement therapy [39]. After a median follow-up of

151 days, 36 (49%) patients died, one patient was still
hospitalized, and 37 patients (50%) had been discharged.
Among those who were alive and out of hospital at the
follow up, 23 patients had full recovery of kidney function,
whereas three patients were dependent on kidney replace-
ment therapy. These data suggest that, although renal
recovery is common following AKI in COVID-19, a sig-
nificant portion of patients can have a variable degree of
reduced kidney function at a post-acute phase.

The study by Bowe et al. provided largest and detailed
data on kidney outcomes in a post-acute phase [35]. The
authors analyzed the US Department of Veterans Affairs
national healthcare databases for the assessment of post-
acute sequelae of COVID-19, and found that the patients
have increased risks and burdens of AKI and CKD at
6 months after SARS-CoV-2 infection [9]. In a more
detailed analysis on the kidney outcome that included
89,216 patients, the authors found that 30-day survivors of
COVID-19 exhibited a higher risk of AKI, eGFR decline,
end-stage kidney disease, and major adverse kidney out-
come (defined as eGFR decline of 50% or more, end-stage
kidney disease, or all-cause mortality) compared with non-
infected controls after adjustment for baseline character-
istics [35]. The study concluded that patients with COVID-
19 exhibited increased risk of kidney diseases in the post-
acute phase of COVID-19.

Gu et al. provided data on 1-year outcome of kidney
function in patients with COVID-19 [36]. In this study,
1,734 participants with COVID-19 discharged from hospital
were invited to follow up at 6 and 12 months after the onset
(the median follow-up duration was 342 days). After mul-
tivariable adjustment, the primary outcome, which was the
percentage of eGFR decreased from acute phase to follow-
up, was 8.3% (95% CI 6.0–10.6) higher among patients
who had AKI than those without AKI at the acute phase.
Participants with AKI had an odds ratio (OR) of 4.6 (95%
CI 2.1–10.1) for reduced renal function (defined as an eGFR
of less than 60 ml/min/1.73 m2) and an OR of 2.5 (95% CI
1.3–5.1) for proteinuria (defined as 1+ proteinuria or higher
on urine dipstick testing) at follow-up visit. The risk for
reduced renal function at follow-up increased along with the
AKI stage, with OR of 22.1 for those who had AKI stage 3.
The authors concluded that AKI at an acute phase of
COVID-19 was closely related to the longitudinal decrease
in kidney function at 1 year after the onset.

Nugent et al. compared the rate of change in eGFR after
discharge in patients with COVID-19-associated AKI
(n= 182) and those with AKI not associated with COVID-
19 (n= 1430) [38]. In this retrospective cohort study,
median duration of follow-up was 93 days for those with
COVID-19 and 61 days for those without COVID-19. The
study found that patients with COVID-19-associated AKI
had a greater decrease in eGFR in the unadjusted model
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(difference in slope, −11.3 ml/min/1.73 m2/y), and the sig-
nificant difference in slope was also observed in the fully
adjusted model (−14.0 ml/min/1.73 m2/y). These data sup-
port that AKI associated with SARS-CoV-2 infection can
have a significant impact on kidney function also at a post-
acute phase.

Long COVID and endocrine disease

In humans, both angiotensin-converting enzyme 2 (ACE2)
and transmembrane serine protease 2 (TMPRSS2) are
expressed in several endocrine glands, including the pitui-
tary gland, thyroid gland, adrenal gland, testes and ovaries
[40]. Several studies suggest that the endocrine system is
affected by SARS-CoV-2 infection, both acutely and
chronically.

Pituitary gland

Studies have shown that an acute impairment of adreno-
corticotropic hormone (ACTH) secretion from the pituitary
was observed in 32% of inpatients with COVID-19 [41]. As
for the long-term effects, secretion of ACTH and growth
hormone was significantly decreased in patients with
COVID-19 at three months after the acute phase than
healthy controls [42]. However, in another study, thyroid
stimulating hormone (TSH) secretion is reported to be
preserved [43]. Therefore, the degrees of perturbation in
pituitary function seem variable at a post-acute phase,
which requires further study.

Thyroid gland

There are several case reports of thyroid disorder associated
with COVID-19, such as subacute thyroiditis [44], non-
thyroidal illness syndrome [45], and Graves’ thyrotoxicosis
[46]. Although the precise mechanisms are unclear, these
can be caused either by direct infection of the SARS-CoV-2
to the thyroid or by autoimmune effects mediated by
cytokine storm [47]. Interleukin 6, which is likely to be
involved in cytokine storm in COVID-19 [48], are also
shown to be elevated in Graves’ disease [49]. Regarding the
persistent effects of COVID-19, transient reductions in TSH
and free thyroxine (FT4) were shown to be normalized at a
post-acute phase (median time, 79 days; interquartile range,
52–108 days) [50]. In relation to long COVID, one study
reported that the thyroid function was normal and was not
associated with chronic symptoms at least 3 months after
the diagnosis of COVID-19 [43]. However, in a retro-
spective analysis involving 186 patients with COVID-19,
the ratio of FT4/TSH was decreased in patients with long
COVID symptoms, suggesting that the hormonal changes
may be associated with the persistent symptoms [51].

Adrenal gland

Primary adrenal insufficiency has been reported in several
cases with COVID-19 either by the direct invasion of
SARS-CoV-2 or by acute adrenal infarction and acute
adrenal hemorrhage [52–54]. It is also possible that exo-
genous steroid used for the treatment of COVID-19 may
impair adrenal function by suppressing the hypothalamic-
pituitary-adrenal axis. As for the long-term effect of
COVID-19, adrenal function was preserved in all COVID-
19 survivors at least 3 months after presentation with
COVID-19 [43]. However, Salzano et al. described adrenal
insufficiency in a patient with COVID-19 who was treated
with dexamethasone and was suffered from long COVID
symptoms persisting for 3 months [55]. Therefore, adrenal
insufficiency may need to be considered in patients with
long COVID symptoms [56].

Reproductive system (testes and ovaries)

SARS-CoV-2 infection can cause damage to the testes [57].
Significant loss of germ cells but not Sertoli cells was
observed at postmortem in patients with COVID-19 [57]. In
addition, several case reports have documented that patients
with COVID-19 can present with testicular pain, which was
associated with orchitis, epididymo-orchitis, and testicular
infarction [58–62]. COVID-19 may reduce spermatogenesis
[63] and serum levels of total testosterone [64] or free tes-
tosterone [65] either directly, via hypothalamic-pituitary
dysfunction, or via impaired secretion of gonadotropin
releasing hormone, a phenomenon known to occur with
physiological stressors [66]. Despite acute reduction in
testosterone in patients with COVID-19, one study suggests
that any fall in testosterone levels resolves spontaneously
after recovery from acute illness [67]. However, a pro-
spective, longitudinal cohort study with a follow-up time
of 60 days reported impairments in semen volume, pro-
gressive motility, sperm morphology, sperm concentration,
and the number of spermatozoa in male patient with
COVID-19 [68]

Survey for women of reproductive age indicated that
nearly half of the participants experienced the change in the
menstrual cycle after the COVID-19 pandemic, highlighting
the impact of the psychological distress on reproductive
health [69]. However, it is currently unclear whether SARS-
CoV-2 infection itself can affect female reproductive sys-
tem. In one study that involved female patients with
COVID-19 and non-infected subjects, serum levels of
several hormones such as anti-Müllerian hormone (AMH),
testosterone, and prolactin were altered, and the changes in
these hormones were significantly associated with COVID-
19 in multivariate analysis [70]. In another study, on the
other hand, there were no differences in sex hormones such
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as follicle-stimulating hormone, estradiol, testosterone,
progesterone and AMH compared with age-matched con-
trols [71]. In an international cohort study on long COVID,
prolonged menstrual issues such as abnormally irregular
periods, heavy periods, and post-menopausal bleeding have
been reported [15]. However, given the susceptibility of the
hypothalamic-pituitary-gonadal axis to physical and psy-
chological stress, it is unclear to what extent these issues are
attributable to the biological effect of SARS-CoV-2
infection.

Mechanisms for long COVID and
cardiovascular damage

Pathophysiological mechanisms for long COVID are still
poorly understood. As possible pathogenesis of the long
COVID, residual organ damage by the acute phase of
COVID-19, viral persistence, delayed resolution of
inflammation, autoimmunity, and overlapping each other
have been estimated [72]. Moreover, risk factors of long
COVID at the time of initial COVID-19 diagnosis are also
reported as follows: (1) type 2 diabetes, (2) SARS-CoV-2
RNAemia, (3) Epstein-Barr virus viremia, and (4) specific
autoantibodies [4]. Subjects with either low total

immunoglobulin (Ig) M or low total IgG3 as an immu-
noglobulin signature, older age, history of asthma, and five
symptoms (fever, fatigue, cough, shortness of breath, and
gastrointestinal symptoms) at the primary infection are also
predicted to have an increased risk of developing long
COVID [73]. However, the detailed mechanisms of this
intractable symptom are still an enigma. Here, we discuss
the possible mechanisms of long COVID associated
with CVD.

Endothelial damage

Possible direct SARS-CoV-2 infection to endothelial cells
has been reported [74, 75]; however, there are few reports
that show the presence of viral protein in endothelium [76].
The expression of ACE2 is observed in vascular endothelial
cells (ECs) and vascular smooth muscle cells [77]. There
are other several potential host entry factors on ECs as well
as ACE2 (Fig. 1A): neuropilin-1 (NRP1), which is a pro-
moter of virus entry in the presence of ACE2 and
TMPRESS2 [78, 79], scavenger receptor B type 1 (SR-B1)
[80, 81] and extracellular vimentin [82], which facilitate
ACE2-dependent virus entry; CD147 [83] and αvβ3 integ-
rin [84], which mediate virus entry by endocytosis; and
liver/lymph node-specific ICAM-3 grabbing nonintegrin
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(L-SIGN), which are highly expressed on human liver
sinusoidal endothelial cells and serve as the virus receptor
[85]. Histamine also contributes to the entry of spike protein
into ECs [86]. Moreover, nucleocapsid protein (NP), which
is one of the most crucial structural components of SARS-
CoV-2 activates human ECs through toll-like receptor
(TLR) 2/nuclear factor-kappa B (NF-κB) and mitogen-
activated protein kinase (MAPK) signaling [87]. Interest-
ingly, a lipid-lowering agent, simvastatin works as a potent
inhibitor of NP-induced endothelial activation [87]. SARS-
CoV-2 spike protein alone damages ECs by downregulation
of ACE2 due to the impaired mitochondrial function [88].
Thus, vaccination could inhibit EC injury via the protection
of the binding of S protein to EC, while vaccination causes
a temporal increase in inflammatory markers and dete-
rioration of endothelial function [89, 90]. On the other hand,
Wagner et al. demonstrated ACE2 expression was only
observed in human coronary artery ECs (HCAECs) among
several ECs tested, and the variant SARS-CoV-2 B.1.1.7,
but not wild type SARS-CoV-2, reduced the HCAEC cell
number by cytotoxic effect [91]. However, even such a
variant did not replicate in HCAECs, indicating that SARS-
CoV-2 may show an abortive infection in endothelial cells
[91, 92].

These virus-induced cytopathic effects in the acute phase
impairs endothelial function, and the residual EC damage in
the post-acute phase can predispose patients to cardiovas-
cular and thrombotic events (Fig. 1B) [93]. As noted pre-
viously, EC dysfunction assessed by brachial artery FMD
remained impaired even at 6 months post-hospital discharge
[24]. Such long-term EC damage is also considered to cause
cardiovascular complications of long COVID such as
stroke, ischemic heart attacks, and thromboembolic dis-
orders [21]. Inflammatory cytokines and leukocyte activa-
tion lead to EC activation and endothelial dysfunction via
multiple mechanisms such as direct damage, loss of tight
junctions, and hyperpermeability [94]. Viral pathogen-
associated molecular patterns such as viral proteins,
double-stranded RNA, and single-stranded RNA initially
activate the innate immune system [95]. Activating the
innate immune response to eradicate the virus induces
overproduction of pro-inflammatory cytokines; however,
the overactivation of immune cells such as neutrophils,
monocytes and lymphocytes induces cytokine storm [96],
resulting in EC damage in the acute phase of COVID-19.
Endothelial dysfunction could be a trigger for immuno-
thrombosis that induces coagulopathy in long COVID
patients [97]. Immunothrombosis induced by activated
neutrophils and monocytes that interact with platelets
enhances the coagulation cascade and leads to intravascular
clot formation in small and larger vessels [97]. For example,
neutrophil extracellular traps (NETs), which are composed
of DNA-histone complexes and proteins released by

activated neutrophils, are one of the key players in COVID-
19-associated immunothrombosis [98]. Adrover et al.
demonstrated the preventive effect of disulfiram, a drug for
alcohol use disorder, on acute lung injury in a rodent model
via reduction of NETs and perivascular fibrosis in the lungs,
and downregulation of coagulation pathways [99]. Fogarty
et al. demonstrated the association between persistent EC
damage and long COVID pathogenesis, such as persistent
procoagulant effects independently of active NETosis; [93]
however, NETs may contribute to the residual organ
damage in COVID-19. Thus, a therapeutic approach tar-
geting NETs has been expected to prevent residual
multiple organ damage, resulting in less severity of long
COVID [100].

Cardiomyocyte damage

Lingering symptoms regarding the cardiovascular system in
long COVID include arrhythmias, palpitations, hypoten-
sion, venous thromboembolic diseases, myocarditis and
heart failure [21]. Using longer-duration wearable sensor
data, Radin et al. showed that subjects with COVID-19
exhibited transient bradycardia followed by a prolonged
tachycardia, which did not return to baseline until 79 days
on average after the symptom onset [101]. It has been
reported that patients with long COVID showed increased
sympathetic activity and parasympathetic reduction [102].
Recently, Mills et al. demonstrated that bromodomain and
extra-terminal protein (BET) family inhibitors prevented
diastolic dysfunction and death in a mouse cytokine-storm
model via reduction of SARS-CoV-2 infection of cardio-
myocytes by decreasing ACE2 expression [103]. Thus,
residual cardiac damage by acute COVID-19 is a cause of
cardiac persistent symptoms (Fig. 1B).

Innate immune response releases cytokines, chemokines,
interferons, and induces further activation and homing of
innate immune cells such as mast cells, neutrophils, den-
dritic cells, monocytes and macrophages to the heart [104].
Persistent elevation of proinflammatory cytokines induces
chronic inflammation and may lead to cardiac remodeling
[105] or cardiac dysrhythmias [106]. Upregulation of serum
transforming growth factor-beta (TGF-β) 1 is observed in
severe COVID-19 patients [107] and an increase in TGF-β
inhibits natural killer cell function, resulting in uncontrol
against virus infection. TGF-β1 plays an important role in
tissue fibrosis in various organ systems [108]. Although the
detailed mechanism of cardiac fibrosis by TGF-signals in
long COVID has not been well investigated compared to
lung fibrosis, cardiac fibrosis may be a key player in a long-
term cardiac consequence of COVID-19 inducing func-
tional and structural changes in the heart [109]. On the other
hand, the persistence of proinflammation induces long-term
persistent immune activation and may contribute to the
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development of latent and overt autoimmunity [110]. An
anti-heart antibody increase was observed in 73.5% of
patients with COVID-19 pneumonia, and among them, anti-
cardiomyocyte antibodies and anti-smooth muscle anti-
bodies had a significant correlation with the lethality of
COVID-19 [111]. Moreover, autoantibodies targeting G
protein-coupled receptors (GPCR) and the renin-
angiotensin system (RAS)-related molecules especially
chemokine (C-X-C motif) receptor 3 (CXCR3) and angio-
tensin II type 1 receptor are the most important predictors
associate with the COVID-19 severity [112]. On the other
hand, Arthur et al. reported that ACE2 autoantibodies are
developed after SARS-CoV-2 infection, suggesting the
reduction of the RAS protective arms [113]. Thus, the
presence of the ACE2 autoantibodies is also a predictor of
COVID-19 severity.

Virus reactivation is also a hot topic in long COVID
(Fig. 1B). Reactivations of Epstein–Barr virus (EBV),
cytomegalovirus (CMV) and human-herpes virus-6 (HHV-
6) DNAemia are detected in intensive care unit (ICU)
patients [114] and EBV reactivation may be associated with
the severity of COVID-19 [115]. Patients with chronic
active EBV infection show cardiac complications
[116–118]. Although the relation between EBV reactivation
and cardiovascular complications in long COVID is
unclear, EBV reactivation may have a role in cardiac dys-
function after COVID-19. Cytomegalovirus infection is also
associated with a significantly increased relative risk of
CVD [119]. Moreover, a cardiotropic virus such as HHV-6
was detected by biopsy of the myocardium of patients with
left ventricular (LV) dysfunction. Interestingly, spontaneous
viral elimination in endomyocardial biopsy sample was
associated with a significant improvement in LV function of
patients with regionally or globally impaired myocardial
function [120]. The effect of virus-reactivation by COVID-
19 on heart diseases is not well known; however, there may
be one of the possible mechanisms of cardiac dysfunction in
long COVID.

Organ senescence after virus infection

SARS-CoV-2-infected cells trigger paracrine senescence
and induce senescence of surrounding non-infected cells.
These senescence cells transfer to senescence-associated
secretory phenotypes (SASPs) that express high levels of
inflammatory factors [121]. Moreover, virus-infected
cells evoke senescence as a universal host cell response
to viral stress and play as a pathogenic trigger of COVID-
19-related organ damage [122]. Thus, senolytic drugs
which selectively eliminate senescent cells are expected
to reduce mortality after SARS-CoV-2 infection. In fact,
the beneficial effect of senolytics, such as fisetin and
senolytic cocktail, Dasatinib plus Quercetin contribute to

improved outcomes in old mice exposed to virus-
pathogen [123].

A pro-inflammatory status that is characterized by high
levels of pro-inflammatory markers in cells and tissues
(inflammaging) contributes to immunosenescence, which is
defined as changes to the immune system, including a
reduced ability to respond to new antigens and uncontrolled
activation of innate immune response, resulting in tissue
damage such as CVD [124].

Alterations of microbiota

SARS-CoV-2 can infect the gastrointestinal tract [125] and
prolonged presence of SARS-CoV-2 mRNA was observed
even after throat swab samples were negative [126].
Although most children develop mild symptoms or are
asymptomatic at an acute phase, some children develop
multisystem inflammatory syndrome in children (MIS-C),
which leads to multiple organ failures driven by zonulin-
dependent loss of gut mucosal barrier and subsequent
superantigen-mediated T cell activation [127]. Such a leaky
gut symptom leads to the translation of intestinal bacteria
and antigens into circulation and induces systemic inflam-
mation, resulting in the development of CVD [128].
Recently, it was reported that persistent alterations in the
fecal microbiome occurred in patients with SARS-CoV-2
infection [129]. Liu et al. demonstrated the association
between gut microbiome composition and long COVID
symptoms up to 6 months after clearance of the SARS-
CoV-2 virus [130]. In patients with long COVID, higher
levels of Ruminococcus gnavus, Bacteroides vulgatus, and
lower levels of Faecalibacterium prausnitzii were observed,
while patients without long COVID showed gut micro-
biome profiles that were comparable to that of non-infected
control subjects. However, the effect of the alteration of gut
microbiota on the cardiovascular complication of long
COVID is not well known and further investigation will be
expected (Fig. 1B).

Effects of age and sex on long COVID

Older population and long COVID (frailty and long
COVID)

In terms of the life-threatening risk, older population, which
has a high prevalence of hypertension, has been most
severely affected by the COVID-19 pandemic. When
treating hypertension, it is important to consider the func-
tional status of older patients regardless of chronological
age, as the decline of functional status, recently termed
frailty, could alter the treatment strategy of hypertension
[131, 132]. Of note, it has been shown in multiple
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observational studies [133–155] and systematic reviews
[156–162] that frailty is an independent determinant of
severity and mortality in older patients with COVID-19. To
determine the level of frailty, most studies used clinical
frailty scale (CFS) alone [133–148], while others used the
CFS in combination with other frailty measures
[149, 150, 155] or with other frailty measurements alone
[151–154]. It has been shown in most studies that frailty
status independently predicts severity and mortality of
COVID-19, and the influence is even higher than chron-
ological age. Nevertheless, it should be noted that frailty
classified by CFS primarily includes older subjects who are
functionally dependent and even have limited life expec-
tancy. This is different from the concept of frailty as
determined by other frailty measures, including frailty index
and Cardiovascular Health Study Index; the latter measures
target older people who are functionally independent and
capable of robust recovery. Some studies focused on mul-
timorbidity, the coexistence of 2 or more chronic condi-
tions, on the outcome of patients with COVID-19
[143, 146, 155, 163], reporting that multimorbidity is also
an independent factor of disease severity or mortality.

Several reports have suggested that frailty is also a risk of
long COVID. CFS-based frailty predicted late mortality
more strongly than the severity of COVID-19 [164]. Frailty
was also associated with poor mental health [165], poor
exercise capacity [166], reduced quality of life [167], and
sustained symptom of COVID-19 [168]. Conversely,
COVID-19 is reported to increase the risk of frailty
[169–172]. In patients with COVID-19 who received
treatment in ICU, 74% reported physical symptoms, 26%
mental symptoms, and 16% cognitive symptoms in the
1-year follow-up questionnaires [170]. The CFS sig-
nificantly increased from baseline at a follow-up period
after discharge in patients with COVID-19 [169, 171]. In
nursing home residents, COVID-19-infected residents had a
greater decline in handgrip, walking speed, and a greater
increase in Frail-NH scores compared with uninfected
control [172]. Thus, the relationship between COVID-19
and frailty is bidirectional.

It should also be noted that the social distancing during
COVID-19 pandemic has caused the reduced activity of
older population that may have contributed to the devel-
opment of frailty even among those who have no history of
COVID-19. A systematic review of 25 observational studies
indicated that physical activity reduced during the COVID-
19 pandemic in the older people, which was consistent
across studies [173]. In Japan, the total physical activity
time decreased by up to 40% in older adults during the
pandemic, and those who were living alone and socially
inactive had the greatest decline in physical activity [174].
The percentage of patients who went out at least once a
week decreased after the outbreak from 91 to 87%, from 65

to 46%, and from 47 to 36% in the non-frail, frail, and
nursing care requirement groups, respectively [175].
Approximately 10% of older people showed new transitions
to frailty defined by the Frailty Screening Index over
6 months during the COVID-19 pandemic in Japan [176].
In addition, psychological distress increased after COVID-
19 pandemic in older adults, and persistence or develop-
ment of frailty and multimorbidity was associated with
psychological distress [177].

Given these multifactorial bidirectional influences of
COVID-19 on frailty and related conditions, it is important
for physicians to be aware of changes in the functional
status of older hypertensive patients. In particular, it should
be noted that frailty is not considered to trigger hyperten-
sion, but rather orthostatic hypotension, which increases the
risk of falls and fractures along with the impaired physical
condition [178–180].

Sex difference in long COVID and COVID-19
sequelae

In spite of equivalent probability of being infected by
SARS-CoV-2 in women and men, current evidence sug-
gests sex difference in severity and mortality of patients
infected with SARS-CoV-2. Multiple studies reported
that men tend to develop more severe disease with
increased mortality than women in the acute phase
[181–184]. Etiology responsible for sex difference in the
prognosis of COVID-19 in the acute phase is still
uncertain. However, fewer cardiovascular risk factors,
higher immune response, lower expression of ACE2 in
women than men, and gender difference in social beha-
vior (lower levels of smoking/drinking, more undertaking
of preventive measures; frequent hand washing, wearing
masking, etc. in women than men) may explain some part
of sex difference in the prognosis of COVID-19 in acute
phase [185].

Meanwhile, sex difference in the risk of long COVID has
been also suggested. Although some small-scale studies
failed to reveal sex difference in the risk of long COVID
[186, 187], multiple large-scale studies reported women are
more prone to develop long COVID than men. A multi-
center cohort study from Spain consisted of 1,969 COVID-
19 survivors (mean age: 61 years, women: 46.4%) during
the first wave of pandemic reported that the long-COVID
symptoms were observed up to 60% of patients [188]. The
average number of long-COVID symptoms was 2.25 for
women and 1.5 for men, and female sex was associated with
≧3 long-COVID symptoms (OR 2.54, 95% CI 1.67–3.86),
fatigue (OR 1.51, 95% CI 1.04–2.21), dyspnea (OR 1.43,
95% CI 1.08–1.89, OR 1.41, 95% CI 1.11–1.79), pain (OR
1.35, 95% CI 1.06–1.72), hair loss (OR 4.53, 95% CI
2.78–7.37), ocular problems (OR 1.98, 95% CI 1.19–3.31),
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depressive levels (OR 1.61, 95% CI 1.00–2.57) and worse
sleep quality (OR 1.63, 95% CI 1.10–2.43) at 8 months
after infection even after adjustment for covariates [188]. A
retrospective cohort study (end of follow up: December
2020) based on electronic health records data from 81
million patients including 273,618 COVID-19 survivors
(mean age: 46.3 ± 19.8 years, women: 55.6%) in the United
States revealed that women were significantly more likely to
have headaches, abdominal symptoms, and anxiety/
depression, whereas men were significantly more likely to
have breathing difficulties and cognitive symptoms during
the whole 6-month period [189]. Also, meta-analysis
involving 13,340 patients (women: 6213, 47.6%) from
20 studies reported that women was more affected by long
COVID than men. In this meta-analysis, the occurrence of
any symptoms of long COVID was 56.3% in women,
compared to 45.5% in men, and female sex was sig-
nificantly associated with any symptoms (OR 1.52, 95% CI
1.27–1.82, I2 68%, Heterogeneity P < 0.01), respiratory
symptoms (OR 1.20, 95% CI 1.20–1.45, I2 65%, Hetero-
geneity P < 0.01), mental health symptoms (OR 1.67, 95%
CI 1.21–2.29, I2 58%, Heterogeneity P < 0.01), and fatigue
(OR 1.54, 95% CI 1.32–1.79, I2 49%, Heterogeneity
P= 0.07) [190]. However, as this meta-analysis exhibited
moderate to high heterogeneity measured by I2 statistic test,
heterogeneity of previous studies evaluating the risk of long
COVID is not negligible. The use of different definitions
and classifications for evaluation of long COVID and its
symptoms, wide range of follow-up period, diverse char-
acteristics of studied subjects (severity of disease, race, age,
inclusion of control subjects), different study design, etc.,
may have substantial impacts on the results of previous
studies. Yet, the accumulating evidence still suggests higher
risk of developing long COVID in women compared
to men.

Underlying mechanisms explaining the sex difference in
the risk of long COVID has not been clarified. However,
several potential factors are considered. First, sex-specific
immunological differences driven by X chromosome and
sex hormones can be one of the mechanisms. Women
generally exhibit greater immune responses to infection and
this could explain part of the lower mortality at acute phase
of COVID-19 in women compared to men. This sex-related
difference in immune system can also contribute to
increased susceptibility to inflammation in women. Clinical
data from Mayo Clinic reported more frequent persistent (å
3 month) elevation of IL-6 levels in SARS-CoV-2 infected
women compared to those in men. This study also revealed
that fatigue, the most common symptoms of long COVID,
was associated with elevated IL-6 levels and with women
[191]. Second, sex-related social factors and worse health
self-perception in women compared to men may contribute
to anxiety/depression, lower health-related quality of life,

and pain, which are also major symptoms of long COVID
[192]. Also, from the epidemiological stand point, the
exclusion of high number of diseased patients, mainly older
men due to their higher mortality during the acute phase
may influence the association of sex and risk of
long COVID.

As cardiovascular complications of COVID-19 in acute
phase have been well documented, the increasing studies
report post-acute cardiovascular manifestations of COVID-
19. Previously mentioned cohort study of the US Depart-
ment of VA revealed that risks of CVD, dysrhythmias,
ischemic and non-ischemic heart disease, heart failure,
thromboembolic disease, and MACE (composite of myo-
cardial infarction, stroke and all-cause mortality and any
cardiovascular outcomes,) were elevated in COVID-19
patients at one year after infection. However, for the sex
difference in the risk of long-term cardiovascular outcomes
after SARS-CoV-2 infection, this study suggested this risk
was evident regardless of sex [21]. On the other hand,
another large-scale claim data-based study suggested sex
difference in the risk of cardiovascular sequelae during
post-acute phase of COVID-19. A claim data-based study
enrolling 87,337 SARS-CoV-2 infected individuals over 65
years old in the US estimated the excess risk for sequelae
including CVD caused by infection with SARS-CoV-2 at
120 days after the acute phase. They reported that elderly
subjects infected by SARS-CoV-2 had higher risk of
hypertension, cardiac rhythm disorders, hypercoagulability,
and kidney injury compared to control group matched by
propensity score. They also reported risk of cardiac rhythm
disorders, coronary disease, and hypercoagulability (deep
vein thrombosis, pulmonary embolism, peripheral arterial
occlusions) were higher in men than women with significant
interaction between sex and SARS-CoV-2 infection. The
risk difference (RD) of cardiac rhythm disorders, coronary
disease, and hypercoagulability between SARS-CoV-2
infected group and control group at one year were, car-
diac rhythm disorders; women; RD 1.86, 95% CI
1.32–2.35, men: RD 3.02, 95% CI 2.43–3.73, coronary
disease; women: RD 0.58, 95% CI 0.30–0.88, men: RD
1.08, 95% CI 0.72–1.45, hypercoagulability; women: RD
2.08, 95% CI 1.63–2.50 men: RD 2.59, 95% CI 2.09–3.15,
respectively (all P values for interaction were <0.05) [7].
However, even though accumulating evidence suggests
increased risk of CVD [7] and impaired cardiovascular
function (i.e. endothelial dysfunction, myocardium injury)
secondary to COVID-19 [24, 27], few study focus on the
sex difference in long-term cardiovascular outcome sec-
ondary to COVID-19. Also, sex difference in the risk of
hypertension after COVID-19 has not been reported at
present. As recognition and consideration of sex difference
in prevention and treatment of disease are fundamental steps
toward precision medicine, further evidence of sex
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difference in Long COVID and cardiovascular outcomes
secondary to COVID-19 are warranted.

Conclusion and areas of uncertainty

As reviewed in this manuscript, accumulating evidence sug-
gests that long COVID affects the clinical course of
hypertension-related disorders, such as CVD, kidney diseases,
and endocrine diseases. Studies thus far also indicate that long
COVID has greater impacts on older population and women.
Nonetheless, there are several clinical issues that require further
investigation. The majority of studies evaluating long COVID
and hypertension-related organs were conducted in the early
phase of pandemic and few studies investigated the influence of
new variants of coronavirus on the association of long COVID
and hypertension-related organs. For example, a recent study of
self-reported data to COVID Study app suggested that the
prevalence of long COVID of the Omicron variant (majority
was BA.1variant) was lower than that of Delta variant [193].
On the other hand, one article suggests that the BA.2 variant,
which took place of recent wave after the wave of the Omicron
BA.1 variant, caused approximately same rate of long COVID
as the Delta variant [194]. In addition, the drastic changes in the
environment surrounding COVID-19, e.g., the development of
vaccines and new treatments for COVID-19, as well as the
change in society and people’s behavior, can have profound
impacts on the risk of long COVID. Nonetheless, the effect of
vaccination on long COVID is still controversial [195]. It also
needs to note that no studies thus far evaluated the effects of
third or fourth boosters on long COVID.

Also, currently there are no established treatments of
long COVID. As many clinical trials evaluating the effects
of variety of treatments on long COVID are currently in
progress [13], the results of these trials are highly antici-
pated. To overcome COVID-19, clinicians, researchers, and
various specialists in the world have been concentrating
their wisdom. Yet, we are still in the half way towards the
adaptation to the world with COVID-19, and we need more
evidence to recover from the huge impacts of COVID-19.
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